Интегрируемые гамильтоновы системы, связанные с градуированными алгебрами Ли
Zapiski naucnych seminarov Leningradskogo (1980)
- Volume: 95, page 3-54
Access Full Article
topHow to cite
topРейман, А.Г.. "Интегрируемые гамильтоновы системы, связанные с градуированными алгебрами Ли." Zapiski naucnych seminarov Leningradskogo 95 (1980): 3-54. <http://eudml.org/doc/68813>.
@article{Рейман1980,
author = {Рейман, А.Г.},
journal = {Zapiski naucnych seminarov Leningradskogo},
keywords = {parabolic decompositions of semisimple Lie algebras; generalized Toda lattices; Novikov spectral parameter; compact configuration spaces; higher-dimensional tops; motions of point in homogeneous spaces; linear and quadratic potentials; integrals of motion in involution; factorization problem in appropriate Lie group; Lax form; commutator representation; phase space is cotangent bundle; splitting into kinetic energy and potential energy; Kirillov-Kostant symplectic structure; coadjoint representation; Souriau-Sternberg-Marsden-Weinstein theory of reduction; geometric translation of Adler's method},
language = {rus},
pages = {3-54},
publisher = {Nauka},
title = {Интегрируемые гамильтоновы системы, связанные с градуированными алгебрами Ли},
url = {http://eudml.org/doc/68813},
volume = {95},
year = {1980},
}
TY - JOUR
AU - Рейман, А.Г.
TI - Интегрируемые гамильтоновы системы, связанные с градуированными алгебрами Ли
JO - Zapiski naucnych seminarov Leningradskogo
PY - 1980
PB - Nauka
VL - 95
SP - 3
EP - 54
LA - rus
KW - parabolic decompositions of semisimple Lie algebras; generalized Toda lattices; Novikov spectral parameter; compact configuration spaces; higher-dimensional tops; motions of point in homogeneous spaces; linear and quadratic potentials; integrals of motion in involution; factorization problem in appropriate Lie group; Lax form; commutator representation; phase space is cotangent bundle; splitting into kinetic energy and potential energy; Kirillov-Kostant symplectic structure; coadjoint representation; Souriau-Sternberg-Marsden-Weinstein theory of reduction; geometric translation of Adler's method
UR - http://eudml.org/doc/68813
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.