Discrete groups, Mumford curves and Theta functions

Marius Van Der Put

Annales de la Faculté des sciences de Toulouse : Mathématiques (1992)

  • Volume: 1, Issue: 3, page 399-438
  • ISSN: 0240-2963

How to cite

top

Van Der Put, Marius. "Discrete groups, Mumford curves and Theta functions." Annales de la Faculté des sciences de Toulouse : Mathématiques 1.3 (1992): 399-438. <http://eudml.org/doc/73309>.

@article{VanDerPut1992,
author = {Van Der Put, Marius},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {rigid analytic space; quotient spaces; Shimura curves},
language = {eng},
number = {3},
pages = {399-438},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Discrete groups, Mumford curves and Theta functions},
url = {http://eudml.org/doc/73309},
volume = {1},
year = {1992},
}

TY - JOUR
AU - Van Der Put, Marius
TI - Discrete groups, Mumford curves and Theta functions
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1992
PB - UNIVERSITE PAUL SABATIER
VL - 1
IS - 3
SP - 399
EP - 438
LA - eng
KW - rigid analytic space; quotient spaces; Shimura curves
UR - http://eudml.org/doc/73309
ER -

References

top
  1. [A1] Abhyankar ( S.S.) .— Coverings of algebraic curves, Amer. J. of Math.79 (1957), pp. 825-856. Zbl0087.03603MR94354
  2. [A2] Abhyankar ( S.S.) .- Galois theory on the line in nonzero characteristic, Bull. A.M.S., to appear. Zbl0760.12002MR1118002
  3. [BGR] Bosch ( S.), Güntzer ( U.) and Remmert ( R.) .— Non archimedean AnalysisGrundlehren Math. Wiss.261, Springer Verlag, Berlin1984. Zbl0539.14017MR746961
  4. [D1] Drinfeld ( V.G.) .— Elliptic Modules, Math. USSR-Ss23 (1974), pp. 561-592. Zbl0321.14014MR384707
  5. [D2] Drinfeld ( V.G.) . — Coverings ofp-adic symmetric regions, Funct. Analysis and its appl.10 n° 2 (1976), pp. 107-115. Zbl0346.14010MR422290
  6. [FP1] Fresnel ( J.) and Van Der Put ( M.) .— Géométrie analytique rigide et applications, Birkhäuser, 1981. Zbl0479.14015MR644799
  7. [G] Gerritzen ( L.) .— Die Jacobi-Abbilung über dem Raum der Mumfordkurven, Math. Ann.261 (1982), pp.81-100. Zbl0498.14017MR675209
  8. [G1] Gekeler ( E.U.) .— Zur Arithmetik von Drinfeld-Moduln, Math. Ann.262 (1983), 167-182. Zbl0536.14028MR690193
  9. [G2] Gekeler ( E.U.) .— Drinfeld modular curves, Lect. Notes in Math.1231, Springer Verlag, 1986. Zbl0607.14020MR874338
  10. [GR] Gekeler ( E.U.) and Reversat ( M.) .— Some results on the Jacobians of Drinfeld modular curves, Preprint Univ. Toulouse3 (1991). MR1196521
  11. [GP] Gerritzen ( L.) and Van Der Put ( M.) .— Schottky groups and Mumford curves, Lect. Notes in Math.817 (1980). Zbl0442.14009MR590243
  12. [HW] Hardy ( G.H.) and Wright ( E.M.) An introduction to the theory of numbers (1945). 
  13. [JL] Jordan ( B.W.) and Livné ( R.A.) .— Local Diophantine Properties of Shimura curves, Math. Ann.270 (1989), pp. 235-248 . Zbl0536.14018MR771981
  14. [P] Van Der Put ( M.) .- Les fonctions thêta d'une courbe de Mumford, Groupe d'étude d'Analyse ultramétrique, 9e année (1981/82), 10, 12 p. Zbl0515.14027
  15. [PV] Van Der Put ( M.) and Voskuil ( H.) .- Symmetric spaces associated to split algebraic groups over local fields (to appear in Journ. f. d. reine u. angew. Math. 1992). Zbl0753.14018MR1191600
  16. [Ri] Ribet ( K.A.) .— On modular representations of Gal(Q/Q) arising from modular forms, Invent. Math.100 (1990) pp. 431-476. Zbl0773.11039MR1047143
  17. [S1] Serre ( J.-P.) .— Corps locaux, Hermann, Paris (1968). Zbl0137.02601MR354618
  18. [S2] Serre ( J.-P.) .— Arbres, amalgames, Sl2, Astérisque46 (1977). Zbl0369.20013MR476875

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.