Discrete groups, Mumford curves and Theta functions

Marius Van Der Put

Annales de la Faculté des sciences de Toulouse : Mathématiques (1992)

  • Volume: 1, Issue: 3, page 399-438
  • ISSN: 0240-2963

How to cite

top

Van Der Put, Marius. "Discrete groups, Mumford curves and Theta functions." Annales de la Faculté des sciences de Toulouse : Mathématiques 1.3 (1992): 399-438. <http://eudml.org/doc/73309>.

@article{VanDerPut1992,
author = {Van Der Put, Marius},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {rigid analytic space; quotient spaces; Shimura curves},
language = {eng},
number = {3},
pages = {399-438},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Discrete groups, Mumford curves and Theta functions},
url = {http://eudml.org/doc/73309},
volume = {1},
year = {1992},
}

TY - JOUR
AU - Van Der Put, Marius
TI - Discrete groups, Mumford curves and Theta functions
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1992
PB - UNIVERSITE PAUL SABATIER
VL - 1
IS - 3
SP - 399
EP - 438
LA - eng
KW - rigid analytic space; quotient spaces; Shimura curves
UR - http://eudml.org/doc/73309
ER -

References

top
  1. [A1] Abhyankar ( S.S.) .— Coverings of algebraic curves, Amer. J. of Math.79 (1957), pp. 825-856. Zbl0087.03603MR94354
  2. [A2] Abhyankar ( S.S.) .- Galois theory on the line in nonzero characteristic, Bull. A.M.S., to appear. Zbl0760.12002MR1118002
  3. [BGR] Bosch ( S.), Güntzer ( U.) and Remmert ( R.) .— Non archimedean AnalysisGrundlehren Math. Wiss.261, Springer Verlag, Berlin1984. Zbl0539.14017MR746961
  4. [D1] Drinfeld ( V.G.) .— Elliptic Modules, Math. USSR-Ss23 (1974), pp. 561-592. Zbl0321.14014MR384707
  5. [D2] Drinfeld ( V.G.) . — Coverings ofp-adic symmetric regions, Funct. Analysis and its appl.10 n° 2 (1976), pp. 107-115. Zbl0346.14010MR422290
  6. [FP1] Fresnel ( J.) and Van Der Put ( M.) .— Géométrie analytique rigide et applications, Birkhäuser, 1981. Zbl0479.14015MR644799
  7. [G] Gerritzen ( L.) .— Die Jacobi-Abbilung über dem Raum der Mumfordkurven, Math. Ann.261 (1982), pp.81-100. Zbl0498.14017MR675209
  8. [G1] Gekeler ( E.U.) .— Zur Arithmetik von Drinfeld-Moduln, Math. Ann.262 (1983), 167-182. Zbl0536.14028MR690193
  9. [G2] Gekeler ( E.U.) .— Drinfeld modular curves, Lect. Notes in Math.1231, Springer Verlag, 1986. Zbl0607.14020MR874338
  10. [GR] Gekeler ( E.U.) and Reversat ( M.) .— Some results on the Jacobians of Drinfeld modular curves, Preprint Univ. Toulouse3 (1991). MR1196521
  11. [GP] Gerritzen ( L.) and Van Der Put ( M.) .— Schottky groups and Mumford curves, Lect. Notes in Math.817 (1980). Zbl0442.14009MR590243
  12. [HW] Hardy ( G.H.) and Wright ( E.M.) An introduction to the theory of numbers (1945). 
  13. [JL] Jordan ( B.W.) and Livné ( R.A.) .— Local Diophantine Properties of Shimura curves, Math. Ann.270 (1989), pp. 235-248 . Zbl0536.14018MR771981
  14. [P] Van Der Put ( M.) .- Les fonctions thêta d'une courbe de Mumford, Groupe d'étude d'Analyse ultramétrique, 9e année (1981/82), 10, 12 p. Zbl0515.14027
  15. [PV] Van Der Put ( M.) and Voskuil ( H.) .- Symmetric spaces associated to split algebraic groups over local fields (to appear in Journ. f. d. reine u. angew. Math. 1992). Zbl0753.14018MR1191600
  16. [Ri] Ribet ( K.A.) .— On modular representations of Gal(Q/Q) arising from modular forms, Invent. Math.100 (1990) pp. 431-476. Zbl0773.11039MR1047143
  17. [S1] Serre ( J.-P.) .— Corps locaux, Hermann, Paris (1968). Zbl0137.02601MR354618
  18. [S2] Serre ( J.-P.) .— Arbres, amalgames, Sl2, Astérisque46 (1977). Zbl0369.20013MR476875

NotesEmbed ?

top

You must be logged in to post comments.