Lefschetz number and degree of a self-map

Abdou Koulder Ben-Naoum; Yves Félix

Annales de la Faculté des sciences de Toulouse : Mathématiques (1997)

  • Volume: 6, Issue: 2, page 229-241
  • ISSN: 0240-2963

How to cite

top

Ben-Naoum, Abdou Koulder, and Félix, Yves. "Lefschetz number and degree of a self-map." Annales de la Faculté des sciences de Toulouse : Mathématiques 6.2 (1997): 229-241. <http://eudml.org/doc/73417>.

@article{Ben1997,
author = {Ben-Naoum, Abdou Koulder, Félix, Yves},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {Lefschetz number; degree; elliptic space; minimal model; bar construction},
language = {eng},
number = {2},
pages = {229-241},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Lefschetz number and degree of a self-map},
url = {http://eudml.org/doc/73417},
volume = {6},
year = {1997},
}

TY - JOUR
AU - Ben-Naoum, Abdou Koulder
AU - Félix, Yves
TI - Lefschetz number and degree of a self-map
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1997
PB - UNIVERSITE PAUL SABATIER
VL - 6
IS - 2
SP - 229
EP - 241
LA - eng
KW - Lefschetz number; degree; elliptic space; minimal model; bar construction
UR - http://eudml.org/doc/73417
ER -

References

top
  1. [1] Adams ( J.F.).— On the cobar construction, Proc. Nat. Sci. USA42 (1956), pp. 409-412. Zbl0071.16404MR79266
  2. [2] Deligne ( P.), Griffiths ( P.), Morgan ( J.) and Sullivan ( D.).— Real homotopy theory of Kähler manifolds, Inventiones Math.29 (1975), pp. 245-274. Zbl0312.55011MR382702
  3. [3] Felix ( Y.), Halperin ( S.) and Thomas ( J.-C.).— Adam's cobar equivalence, Trans. Amer. Math. Soc.329 (1992), pp. 531-549. Zbl0765.55005MR1036001
  4. [4] Felix ( Y.) and Thomas ( J.-C.) .— Extended Adams-Hilton's construction, Pacific J. Math.128 (1987), pp. 251-263. Zbl0585.55013MR888517
  5. [5] Haibao ( D.) . — The Lefschetz Number of Self-Maps of Lie Groups, Proc. Amer. Math. Soc.104 (1988), pp. 1284-1286. Zbl0689.55005MR935107
  6. [6] Halperin ( S.). — Finiteness in the minimal models of Sullivan, Trans. Amer. Math. Soc.230 (1977), pp. 173-199. Zbl0364.55014MR461508
  7. [7] Halperin ( S.). — Lectures on minimal models, Mémoire de la Soc. Math. de France9-10 (1983). Zbl0536.55003MR736299
  8. [8] Halperin ( S.). —Spaces whose rational homology and de Rham homotopy are both finite dimension In “Homotopie algébrique et algèbre locale”, éditeurs J.-M. Lemaire et J.-C. Thomas, Astérisque Soc. Math. de France(1984), pp. 198—205. Zbl0546.55015MR749058
  9. [9] Halperin ( S. and Stasheff ( J.) .—Obstructions to homotopy equivalences, Advances in Math.32 (1979), pp. 233—279. Zbl0408.55009MR539532
  10. [10] Lupton ( G. and Oprea ( J.) .—Fixed points and powers of maps on H-spaces, Preprint1994. MR1328360
  11. [11] Moore ( J.C.) .—Algèbre homotopique et homologie des espaces classifiants, Séminaire H. Cartan, exposé 7(1959–1960). Zbl0115.17205
  12. [12] Milnor ( J. and Moore ( J.C.) .—On the structure of Hopf algebras, Annals of Math.81 (1965), pp. 211—264. Zbl0163.28202MR174052

NotesEmbed ?

top

You must be logged in to post comments.