Lefschetz number and degree of a self-map

Abdou Koulder Ben-Naoum; Yves Félix

Annales de la Faculté des sciences de Toulouse : Mathématiques (1997)

  • Volume: 6, Issue: 2, page 229-241
  • ISSN: 0240-2963

How to cite

top

Ben-Naoum, Abdou Koulder, and Félix, Yves. "Lefschetz number and degree of a self-map." Annales de la Faculté des sciences de Toulouse : Mathématiques 6.2 (1997): 229-241. <http://eudml.org/doc/73417>.

@article{Ben1997,
author = {Ben-Naoum, Abdou Koulder, Félix, Yves},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {Lefschetz number; degree; elliptic space; minimal model; bar construction},
language = {eng},
number = {2},
pages = {229-241},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Lefschetz number and degree of a self-map},
url = {http://eudml.org/doc/73417},
volume = {6},
year = {1997},
}

TY - JOUR
AU - Ben-Naoum, Abdou Koulder
AU - Félix, Yves
TI - Lefschetz number and degree of a self-map
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1997
PB - UNIVERSITE PAUL SABATIER
VL - 6
IS - 2
SP - 229
EP - 241
LA - eng
KW - Lefschetz number; degree; elliptic space; minimal model; bar construction
UR - http://eudml.org/doc/73417
ER -

References

top
  1. [1] Adams ( J.F.).— On the cobar construction, Proc. Nat. Sci. USA42 (1956), pp. 409-412. Zbl0071.16404MR79266
  2. [2] Deligne ( P.), Griffiths ( P.), Morgan ( J.) and Sullivan ( D.).— Real homotopy theory of Kähler manifolds, Inventiones Math.29 (1975), pp. 245-274. Zbl0312.55011MR382702
  3. [3] Felix ( Y.), Halperin ( S.) and Thomas ( J.-C.).— Adam's cobar equivalence, Trans. Amer. Math. Soc.329 (1992), pp. 531-549. Zbl0765.55005MR1036001
  4. [4] Felix ( Y.) and Thomas ( J.-C.) .— Extended Adams-Hilton's construction, Pacific J. Math.128 (1987), pp. 251-263. Zbl0585.55013MR888517
  5. [5] Haibao ( D.) . — The Lefschetz Number of Self-Maps of Lie Groups, Proc. Amer. Math. Soc.104 (1988), pp. 1284-1286. Zbl0689.55005MR935107
  6. [6] Halperin ( S.). — Finiteness in the minimal models of Sullivan, Trans. Amer. Math. Soc.230 (1977), pp. 173-199. Zbl0364.55014MR461508
  7. [7] Halperin ( S.). — Lectures on minimal models, Mémoire de la Soc. Math. de France9-10 (1983). Zbl0536.55003MR736299
  8. [8] Halperin ( S.). —Spaces whose rational homology and de Rham homotopy are both finite dimension In “Homotopie algébrique et algèbre locale”, éditeurs J.-M. Lemaire et J.-C. Thomas, Astérisque Soc. Math. de France(1984), pp. 198—205. Zbl0546.55015MR749058
  9. [9] Halperin ( S. and Stasheff ( J.) .—Obstructions to homotopy equivalences, Advances in Math.32 (1979), pp. 233—279. Zbl0408.55009MR539532
  10. [10] Lupton ( G. and Oprea ( J.) .—Fixed points and powers of maps on H-spaces, Preprint1994. MR1328360
  11. [11] Moore ( J.C.) .—Algèbre homotopique et homologie des espaces classifiants, Séminaire H. Cartan, exposé 7(1959–1960). Zbl0115.17205
  12. [12] Milnor ( J. and Moore ( J.C.) .—On the structure of Hopf algebras, Annals of Math.81 (1965), pp. 211—264. Zbl0163.28202MR174052

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.