A Generalized Mean-Value Theorem.
We give an example of a space with the property that every orientable fibration with the fiber is rationally totally non-cohomologous to zero, while there exists a nontrivial derivation of the rational cohomology of of negative degree.
In this paper we compute topological invariants for some configuration spaces of complex projective spaces. We shall describe Sullivan models for these configuration spaces.
La théorie de Sullivan de l’homotopie rationnelle introduit l’algèbre des formes différentielles sur un ensemble simplicial. On montre dans cet article qu’en filtrant cette algèbre on peut obtenir une suite spectrale analogue à celle de Serre. On applique ce résultat pour étudier le modèle minimal d’un fibré et pour obtenir une nouvelle démonstration de la suite spectrale d’Eilenberg-Moore.
On construit une suite spectrale qui converge vers le bigradué associé à une filtration convenable des groupes d’homotopie du monoïde simplicial des équivalences d’homotopie fibrées d’un fibré de Kan dans lui-même. On obtient de nouveaux calculs de ces groupes. En particulier, on calcule le groupe des classes d’homotopie des équivalences d’homotopie d’un espace ayant trois groupes d’homotopie non nuls en dessous de sa dimension.
The class of loop spaces of which the mod cohomology is Noetherian is much larger than the class of -compact groups (for which the mod cohomology is required to be finite). It contains Eilenberg–Mac Lane spaces such as and 3-connected covers of compact Lie groups. We study the cohomology of the classifying space of such an object and prove it is as small as expected, that is, comparable to that of . We also show that X differs basically from the classifying space of a -compact group...
Beaucoup d’informations sur les groupes de cohomologie d’un espace sont obtenues à partir de la suite spectrale de Serre. Dans cet article on construit une suite spectrale de Serre dans le cas “non stable”. Cette suite spectrale “non stable” permet des calculs de groupes d’homotopie d’espaces fonctionnels.