Levels of concentration between exponential and Gaussian
Annales de la Faculté des sciences de Toulouse : Mathématiques (2001)
- Volume: 10, Issue: 3, page 393-404
- ISSN: 0240-2963
Access Full Article
topHow to cite
topBarthe, Franck. "Levels of concentration between exponential and Gaussian." Annales de la Faculté des sciences de Toulouse : Mathématiques 10.3 (2001): 393-404. <http://eudml.org/doc/73552>.
@article{Barthe2001,
author = {Barthe, Franck},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {log-concave probabilty measure; product measure; concentration property; log-Sobolev inequality},
language = {eng},
number = {3},
pages = {393-404},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Levels of concentration between exponential and Gaussian},
url = {http://eudml.org/doc/73552},
volume = {10},
year = {2001},
}
TY - JOUR
AU - Barthe, Franck
TI - Levels of concentration between exponential and Gaussian
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2001
PB - UNIVERSITE PAUL SABATIER
VL - 10
IS - 3
SP - 393
EP - 404
LA - eng
KW - log-concave probabilty measure; product measure; concentration property; log-Sobolev inequality
UR - http://eudml.org/doc/73552
ER -
References
top- [1] Bakry ( D.) and Ledoux ( M.). - Lévy-Gromov isoperimetric inequality for an infinite dimensional diffusion generator. Invent. Math., 123:259-281, 1996. Zbl0855.58011MR1374200
- [2] Bandle ( C.). — Isoperimetric inequalities and applications. Number 7 in Monographs and Studies in Math.Pitman, 1980. Zbl0436.35063MR572958
- [3] Barthe ( F.) and Maurey ( B.). - Somes remarks on isoperimetry of Gaussian type. Ann. Inst. H. Poincaré, Probabilités et statistiques, 36(4):419-434, 2000. Zbl0964.60018MR1785389
- [4] Beckner ( W.). — A generalized Poincaré inequality for Gaussian measures. Proc. Amer. Math. Soc., 105:397-400, 1989. Zbl0677.42020MR954373
- [5] Blower ( G.). — The Gaussian isoperimetric inequality and transportation. Preprint, 1999. MR2018596
- [6] Bobkov ( S.G.). — Extremal properties of half-spaces for log-concave distributions. Ann. Probab., 24(1):35-48, 1996. Zbl0859.60048MR1387625
- [7] Bobkov ( S.G.). — Isoperimetric and analytic inequalities for log-concave probability measures. Ann. Probab., 27(4):1903-1921, 1999. Zbl0964.60013MR1742893
- [8] Bobkov ( S.G.) and Houdré ( C.). - Isoperimetric constants for product probability measures. Ann. Probab., 25(1):184-205, 1997. Zbl0878.60013MR1428505
- [9] Borell ( C.). - Convex measures on locally convex spaces. Ark. Math., 12:239-252, 1974. Zbl0297.60004MR388475
- [10] Borell ( C.). — Convex functions in d-space. Period. Math. Hungar., 6:111-136, 1975. Zbl0274.28009MR404559
- [11] Ehrhard ( A.). — Inégalités isopérimétriques et intégrales de Dirichlet gaussiennes. Ann. Sci. Éc. Norm. Sup., 4e série, 17:317-332, 1984. Zbl0546.49020MR760680
- [12] Federer ( H.). — Geometric Measure Theory. Springer-Verlag, New York, 1969. Zbl0176.00801MR257325
- [13] Ibragimov ( I.A.), Sudakov ( V.N.) and TSIREL'SON ( B.S.). — Norms of Gaussian sample functions. In Proc. of the third Japan- USSR Symposium on Probability Theory, number 550 in LMN, pages 20-41. Springer, 1976. Zbl0359.60019MR458556
- [14] Ilias ( S.). — Constantes explicites dans les inégalités de Sobolev sur les variétés riemanniennes compactes. Ann. Inst. Fourier, Grenoble, 33(2):151-165, 1983. Zbl0528.53040MR699492
- [15] Latała ( R.) and Oleszkiewicz ( K.). - Between Sobolev and Poincaré. In Geometric aspects of functional analysis, volume 1745 of Lecture Notes in Math., pages 147-168. Springer, Berlin, 2000. Zbl0986.60017MR1796718
- [16] Ledoux ( M.). - On Talagrand's deviation inequalities for product measures. ESAIM Prob. & Stat., 1:63-87, 1996. Zbl0869.60013
- [17] Ledoux ( M.). — Concentration of measure and logarithmic Sobolev inequalities. In Séminaire de Probabilités, XXXIII, number 1709 in Lecture Notes in Math., pages 120-216. Springer, Berlin, 1999. Zbl0957.60016MR1767995
- [18] Pisier ( G.). - Probabilistic methods in the geometry of Banach spaces. In Probability and Analysis, Varenna (Italy) 1985, volume 1206 of Lecture Notes in Math., pages 167-241. Springer-Verlag, 1986. Zbl0606.60008MR864714
- [19] Polya ( G.) and Szegö ( G.). — Isoperimetric inequalities in mathematical physics. Princeton University Press, Princeton, 1951. Zbl0044.38301MR43486
- [20] Talagrand ( M.). - Concentration of measure and isoerimetric inequalities in product spaces. Publications Mathématiques de l'I.H.E.S., 81:73-205, 1995. Zbl0864.60013MR1361756
- [21] Wang ( F.-Y.). - Logarithmic Sobolev inequalities on noncompact Riemannian manifolds. Proba. Theory Relat. Fields, 109:417-424, 1997. Zbl0887.35012MR1481127
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.