Levels of concentration between exponential and Gaussian

Franck Barthe

Annales de la Faculté des sciences de Toulouse : Mathématiques (2001)

  • Volume: 10, Issue: 3, page 393-404
  • ISSN: 0240-2963

How to cite

top

Barthe, Franck. "Levels of concentration between exponential and Gaussian." Annales de la Faculté des sciences de Toulouse : Mathématiques 10.3 (2001): 393-404. <http://eudml.org/doc/73552>.

@article{Barthe2001,
author = {Barthe, Franck},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {log-concave probabilty measure; product measure; concentration property; log-Sobolev inequality},
language = {eng},
number = {3},
pages = {393-404},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Levels of concentration between exponential and Gaussian},
url = {http://eudml.org/doc/73552},
volume = {10},
year = {2001},
}

TY - JOUR
AU - Barthe, Franck
TI - Levels of concentration between exponential and Gaussian
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2001
PB - UNIVERSITE PAUL SABATIER
VL - 10
IS - 3
SP - 393
EP - 404
LA - eng
KW - log-concave probabilty measure; product measure; concentration property; log-Sobolev inequality
UR - http://eudml.org/doc/73552
ER -

References

top
  1. [1] Bakry ( D.) and Ledoux ( M.). - Lévy-Gromov isoperimetric inequality for an infinite dimensional diffusion generator. Invent. Math., 123:259-281, 1996. Zbl0855.58011MR1374200
  2. [2] Bandle ( C.). — Isoperimetric inequalities and applications. Number 7 in Monographs and Studies in Math.Pitman, 1980. Zbl0436.35063MR572958
  3. [3] Barthe ( F.) and Maurey ( B.). - Somes remarks on isoperimetry of Gaussian type. Ann. Inst. H. Poincaré, Probabilités et statistiques, 36(4):419-434, 2000. Zbl0964.60018MR1785389
  4. [4] Beckner ( W.). — A generalized Poincaré inequality for Gaussian measures. Proc. Amer. Math. Soc., 105:397-400, 1989. Zbl0677.42020MR954373
  5. [5] Blower ( G.). — The Gaussian isoperimetric inequality and transportation. Preprint, 1999. MR2018596
  6. [6] Bobkov ( S.G.). — Extremal properties of half-spaces for log-concave distributions. Ann. Probab., 24(1):35-48, 1996. Zbl0859.60048MR1387625
  7. [7] Bobkov ( S.G.). — Isoperimetric and analytic inequalities for log-concave probability measures. Ann. Probab., 27(4):1903-1921, 1999. Zbl0964.60013MR1742893
  8. [8] Bobkov ( S.G.) and Houdré ( C.). - Isoperimetric constants for product probability measures. Ann. Probab., 25(1):184-205, 1997. Zbl0878.60013MR1428505
  9. [9] Borell ( C.). - Convex measures on locally convex spaces. Ark. Math., 12:239-252, 1974. Zbl0297.60004MR388475
  10. [10] Borell ( C.). — Convex functions in d-space. Period. Math. Hungar., 6:111-136, 1975. Zbl0274.28009MR404559
  11. [11] Ehrhard ( A.). — Inégalités isopérimétriques et intégrales de Dirichlet gaussiennes. Ann. Sci. Éc. Norm. Sup., 4e série, 17:317-332, 1984. Zbl0546.49020MR760680
  12. [12] Federer ( H.). — Geometric Measure Theory. Springer-Verlag, New York, 1969. Zbl0176.00801MR257325
  13. [13] Ibragimov ( I.A.), Sudakov ( V.N.) and TSIREL'SON ( B.S.). — Norms of Gaussian sample functions. In Proc. of the third Japan- USSR Symposium on Probability Theory, number 550 in LMN, pages 20-41. Springer, 1976. Zbl0359.60019MR458556
  14. [14] Ilias ( S.). — Constantes explicites dans les inégalités de Sobolev sur les variétés riemanniennes compactes. Ann. Inst. Fourier, Grenoble, 33(2):151-165, 1983. Zbl0528.53040MR699492
  15. [15] Latała ( R.) and Oleszkiewicz ( K.). - Between Sobolev and Poincaré. In Geometric aspects of functional analysis, volume 1745 of Lecture Notes in Math., pages 147-168. Springer, Berlin, 2000. Zbl0986.60017MR1796718
  16. [16] Ledoux ( M.). - On Talagrand's deviation inequalities for product measures. ESAIM Prob. & Stat., 1:63-87, 1996. Zbl0869.60013
  17. [17] Ledoux ( M.). — Concentration of measure and logarithmic Sobolev inequalities. In Séminaire de Probabilités, XXXIII, number 1709 in Lecture Notes in Math., pages 120-216. Springer, Berlin, 1999. Zbl0957.60016MR1767995
  18. [18] Pisier ( G.). - Probabilistic methods in the geometry of Banach spaces. In Probability and Analysis, Varenna (Italy) 1985, volume 1206 of Lecture Notes in Math., pages 167-241. Springer-Verlag, 1986. Zbl0606.60008MR864714
  19. [19] Polya ( G.) and Szegö ( G.). — Isoperimetric inequalities in mathematical physics. Princeton University Press, Princeton, 1951. Zbl0044.38301MR43486
  20. [20] Talagrand ( M.). - Concentration of measure and isoerimetric inequalities in product spaces. Publications Mathématiques de l'I.H.E.S., 81:73-205, 1995. Zbl0864.60013MR1361756
  21. [21] Wang ( F.-Y.). - Logarithmic Sobolev inequalities on noncompact Riemannian manifolds. Proba. Theory Relat. Fields, 109:417-424, 1997. Zbl0887.35012MR1481127

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.