On the stability of nonlinear Feynman-Kac semigroups
Pierre Del Moral; Laurent Miclo
Annales de la Faculté des sciences de Toulouse : Mathématiques (2002)
- Volume: 11, Issue: 2, page 135-175
- ISSN: 0240-2963
Access Full Article
topHow to cite
topDel Moral, Pierre, and Miclo, Laurent. "On the stability of nonlinear Feynman-Kac semigroups." Annales de la Faculté des sciences de Toulouse : Mathématiques 11.2 (2002): 135-175. <http://eudml.org/doc/73576>.
@article{DelMoral2002,
author = {Del Moral, Pierre, Miclo, Laurent},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {Feynman-Kac semigroups; Dobrushin ergodic coefficient; nonlinear filtering equations},
language = {eng},
number = {2},
pages = {135-175},
publisher = {UNIVERSITE PAUL SABATIER},
title = {On the stability of nonlinear Feynman-Kac semigroups},
url = {http://eudml.org/doc/73576},
volume = {11},
year = {2002},
}
TY - JOUR
AU - Del Moral, Pierre
AU - Miclo, Laurent
TI - On the stability of nonlinear Feynman-Kac semigroups
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2002
PB - UNIVERSITE PAUL SABATIER
VL - 11
IS - 2
SP - 135
EP - 175
LA - eng
KW - Feynman-Kac semigroups; Dobrushin ergodic coefficient; nonlinear filtering equations
UR - http://eudml.org/doc/73576
ER -
References
top- [1] Bakry ( D.). - L'hypercontractivité et son utilisation en théorie des semi-groupes, École d'été de St. Flour XXII-1992, Lecture Notes in Math, 1581, Ed. P. Bernard. Zbl0856.47026MR1307413
- [2] Carlen ( E.A.). - Propagation of smoothness and the rate of exponential convergence to equilibrium for a spatially homogeneous maxwellian gas, Comm. Math. Phys.199 (1999), n° 3, pp. 521-546. Zbl0927.76088MR1669689
- [3] Carlen ( E.A.), Carvalho ( M.C.) & Wennberg ( B.). - Entropic convergence for solutions of the Boltzmann equation with general physical initial data, Transport Theory Statist. Phys.26 (1997), n° 3, pp. 373-378. Zbl0905.76070
- [4] Clark ( J.M.C.).— The design of robust approximation to stochastic differential equations of nonlinear filtering, Comm. Systems and Random Process Theory, (Ed. J.K. Skwirzinski), Sithof and Noordhoof (1978). MR529130
- [5] Davis ( E.B.). — Heat Kernels and Spectral Theory, Cambridge University Press, 1989. Zbl0699.35006MR990239
- [6] Del Moral ( P.) & Guionnet ( A.). - On the stability of interacting processes with applications to filtering and genetic algorithms, Ann. de l'Inst. H. Poincaré Probab. Statist., to appear (2001). Zbl0990.60005
- [7] Del Moral ( P.), Jacod ( J.) & Protter ( Ph.). — The Monte-Carlo Method for filtering with discrete time observations, Probability Theory and Related Fields, to appear (2001). Zbl0979.62072
- [8] Del Moral ( P.) & Miclo ( L.). - Branching and interacting particle systems approximations of Feynman-Kac formulae with applications to non-linear filtering, Séminaire de Probabilités XXXIV, Lecture Notes in Mathematics, Springer, Vol. 1729 (2000), pp. 1-145. Zbl0963.60040
- [9] Del Moral ( P.) & Miclo ( L.). — About the strong propagation of chaos for interacting particle approximations of Feynman-Kac formulae, Preprint (2000).
- [10] Dobrushin ( R.L.). - Central limit theorem for nonstationnary Markov chains, I,II, Theory of Proba and its applications, Vol 1, number 1 and 4 (1956), pp. 66-80 and pp. 330-385. Zbl0093.15001MR86436
- [11] Ethier ( S.) & Kurtz ( T.). - Markov Processes, Characterization and Convergence, Wiley series in probability and mathematical statistics, John Wiley and Sons, New York, 1986. Zbl0592.60049
- [12] Fleming ( W.H.) & Mitter ( S.K.). - Optimal control and nonlinear filtering for nondegenerate diffusion processes, Stochastics, Vol. 8 (1972), pp. 63-77. Zbl0493.93047
- [13] Jacod ( J.) & Shiryaev ( A.N.). - Limit Theorems for Stochastic Processes, Springer- Verlag, 288 (1987). Zbl0635.60021
- [14] Kushner ( H.). — A robust discrete state approximation to the optimal nonlinear filter for a diffusion, Stochastics, Vol. 3 (1979), pp. 75-83. Zbl0421.60054MR553906
- [15] Méléard ( S.). - Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models, In D. Talay and L. Tubaro, editors, Probabilistic Models for Nonlinear Partial Differential Equations, Montecatini Terme, 1995, Lecture Notes in Mathematics, 1627, Springer-Verlag, 1996. Zbl0864.60077MR1431299
- [16] Pardoux ( E.). - Équation du lissage non linéaire, de la prédiction et du lissage, Stochastics, vol. 6 (1982), pp. 193-231. Zbl0491.93062MR665400
- [17] Revuz ( D.) & Yor ( M.). - Continuous Martingales and Brownian Motion, Springer-Verlag, 293, 2nd Ed. (1991). Zbl0731.60002
- [18] Rozovskiiĭ ( B.). — Stochastic partial differential equations that arise in nonlinear filtering problem, U.M.N. XXVII, 3 (1972), pp. 213-214. Zbl0258.60033
- [19] Tamura ( Y.). — Free energy and the convergence of distributions of diffusions of McKean type, J. Fac. Sci. Univ. Tokyo, Sect. IA, Math., 34, pp. 443-484. Zbl0638.60070MR914029
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.