On the stability of nonlinear Feynman-Kac semigroups

Pierre Del Moral; Laurent Miclo

Annales de la Faculté des sciences de Toulouse : Mathématiques (2002)

  • Volume: 11, Issue: 2, page 135-175
  • ISSN: 0240-2963

How to cite

top

Del Moral, Pierre, and Miclo, Laurent. "On the stability of nonlinear Feynman-Kac semigroups." Annales de la Faculté des sciences de Toulouse : Mathématiques 11.2 (2002): 135-175. <http://eudml.org/doc/73576>.

@article{DelMoral2002,
author = {Del Moral, Pierre, Miclo, Laurent},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {Feynman-Kac semigroups; Dobrushin ergodic coefficient; nonlinear filtering equations},
language = {eng},
number = {2},
pages = {135-175},
publisher = {UNIVERSITE PAUL SABATIER},
title = {On the stability of nonlinear Feynman-Kac semigroups},
url = {http://eudml.org/doc/73576},
volume = {11},
year = {2002},
}

TY - JOUR
AU - Del Moral, Pierre
AU - Miclo, Laurent
TI - On the stability of nonlinear Feynman-Kac semigroups
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2002
PB - UNIVERSITE PAUL SABATIER
VL - 11
IS - 2
SP - 135
EP - 175
LA - eng
KW - Feynman-Kac semigroups; Dobrushin ergodic coefficient; nonlinear filtering equations
UR - http://eudml.org/doc/73576
ER -

References

top
  1. [1] Bakry ( D.). - L'hypercontractivité et son utilisation en théorie des semi-groupes, École d'été de St. Flour XXII-1992, Lecture Notes in Math, 1581, Ed. P. Bernard. Zbl0856.47026MR1307413
  2. [2] Carlen ( E.A.). - Propagation of smoothness and the rate of exponential convergence to equilibrium for a spatially homogeneous maxwellian gas, Comm. Math. Phys.199 (1999), n° 3, pp. 521-546. Zbl0927.76088MR1669689
  3. [3] Carlen ( E.A.), Carvalho ( M.C.) & Wennberg ( B.). - Entropic convergence for solutions of the Boltzmann equation with general physical initial data, Transport Theory Statist. Phys.26 (1997), n° 3, pp. 373-378. Zbl0905.76070
  4. [4] Clark ( J.M.C.).— The design of robust approximation to stochastic differential equations of nonlinear filtering, Comm. Systems and Random Process Theory, (Ed. J.K. Skwirzinski), Sithof and Noordhoof (1978). MR529130
  5. [5] Davis ( E.B.). — Heat Kernels and Spectral Theory, Cambridge University Press, 1989. Zbl0699.35006MR990239
  6. [6] Del Moral ( P.) & Guionnet ( A.). - On the stability of interacting processes with applications to filtering and genetic algorithms, Ann. de l'Inst. H. Poincaré Probab. Statist., to appear (2001). Zbl0990.60005
  7. [7] Del Moral ( P.), Jacod ( J.) & Protter ( Ph.). — The Monte-Carlo Method for filtering with discrete time observations, Probability Theory and Related Fields, to appear (2001). Zbl0979.62072
  8. [8] Del Moral ( P.) & Miclo ( L.). - Branching and interacting particle systems approximations of Feynman-Kac formulae with applications to non-linear filtering, Séminaire de Probabilités XXXIV, Lecture Notes in Mathematics, Springer, Vol. 1729 (2000), pp. 1-145. Zbl0963.60040
  9. [9] Del Moral ( P.) & Miclo ( L.). — About the strong propagation of chaos for interacting particle approximations of Feynman-Kac formulae, Preprint (2000). 
  10. [10] Dobrushin ( R.L.). - Central limit theorem for nonstationnary Markov chains, I,II, Theory of Proba and its applications, Vol 1, number 1 and 4 (1956), pp. 66-80 and pp. 330-385. Zbl0093.15001MR86436
  11. [11] Ethier ( S.) & Kurtz ( T.). - Markov Processes, Characterization and Convergence, Wiley series in probability and mathematical statistics, John Wiley and Sons, New York, 1986. Zbl0592.60049
  12. [12] Fleming ( W.H.) & Mitter ( S.K.). - Optimal control and nonlinear filtering for nondegenerate diffusion processes, Stochastics, Vol. 8 (1972), pp. 63-77. Zbl0493.93047
  13. [13] Jacod ( J.) & Shiryaev ( A.N.). - Limit Theorems for Stochastic Processes, Springer- Verlag, 288 (1987). Zbl0635.60021
  14. [14] Kushner ( H.). — A robust discrete state approximation to the optimal nonlinear filter for a diffusion, Stochastics, Vol. 3 (1979), pp. 75-83. Zbl0421.60054MR553906
  15. [15] Méléard ( S.). - Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models, In D. Talay and L. Tubaro, editors, Probabilistic Models for Nonlinear Partial Differential Equations, Montecatini Terme, 1995, Lecture Notes in Mathematics, 1627, Springer-Verlag, 1996. Zbl0864.60077MR1431299
  16. [16] Pardoux ( E.). - Équation du lissage non linéaire, de la prédiction et du lissage, Stochastics, vol. 6 (1982), pp. 193-231. Zbl0491.93062MR665400
  17. [17] Revuz ( D.) & Yor ( M.). - Continuous Martingales and Brownian Motion, Springer-Verlag, 293, 2nd Ed. (1991). Zbl0731.60002
  18. [18] Rozovskiiĭ ( B.). — Stochastic partial differential equations that arise in nonlinear filtering problem, U.M.N. XXVII, 3 (1972), pp. 213-214. Zbl0258.60033
  19. [19] Tamura ( Y.). — Free energy and the convergence of distributions of diffusions of McKean type, J. Fac. Sci. Univ. Tokyo, Sect. IA, Math., 34, pp. 443-484. Zbl0638.60070MR914029

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.