Intertwined mappings

Jean Ecalle; Bruno Vallet

Annales de la Faculté des sciences de Toulouse : Mathématiques (2004)

  • Volume: 13, Issue: 3, page 291-376
  • ISSN: 0240-2963

How to cite

top

Ecalle, Jean, and Vallet, Bruno. "Intertwined mappings." Annales de la Faculté des sciences de Toulouse : Mathématiques 13.3 (2004): 291-376. <http://eudml.org/doc/73628>.

@article{Ecalle2004,
author = {Ecalle, Jean, Vallet, Bruno},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {local complex diffeomorphisms; bound groups of mappings; twins; mapping germs; identity-tangent mappings},
language = {eng},
number = {3},
pages = {291-376},
publisher = {Université Paul Sabatier, Institut de Mathématiques},
title = {Intertwined mappings},
url = {http://eudml.org/doc/73628},
volume = {13},
year = {2004},
}

TY - JOUR
AU - Ecalle, Jean
AU - Vallet, Bruno
TI - Intertwined mappings
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2004
PB - Université Paul Sabatier, Institut de Mathématiques
VL - 13
IS - 3
SP - 291
EP - 376
LA - eng
KW - local complex diffeomorphisms; bound groups of mappings; twins; mapping germs; identity-tangent mappings
UR - http://eudml.org/doc/73628
ER -

References

top
  1. [Ce] Cerveau ( D. ). - Une liste de problèmes, in Ecuaciones Diferenciales , Univ. Valladolid, p. 455-460 (1997). 
  2. [Co] Cohen ( SD. ), Glass ( A.M.W.). - Composites of translations and odd rational powers act freely. Bull. Austral. Math. Soc.51, no. 1, 73-81 (1995). Zbl0839.20035MR1313114
  3. [E1] Ecalle ( J. ). — Les fonctions résurgentes, Vol. 1, Algèbres de fonctions résurgentes, Publ. Math. Orsay (1981). Zbl0499.30034
  4. [E2] Ecalle ( J. ). - Les fonctions résurgentes, Vol.2, Les fonctions résurgentes appliquées à l'itération, Publ. Math. Orsay (1981). Zbl0499.30035
  5. [E3] Ecalle ( J. ). — Les fonctions résurgentes, Vol. 3, L'équation du pont et la classification analytique des objets locaux, Publ. Math. Orsay (1985). Zbl0602.30029MR852210
  6. [E4] Ecalle ( J.). — The acceleration operators and their applications , Proc. Internat. Cong. Math, Kyoto (1990), vol.2, Springer, Tokyo, p. 1249-1258 (1991 ). Zbl0741.30030MR1159310
  7. [E5] Ecalle ( J. ). — Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac, Actual. Math., Hermann, Paris (1992). MR1399559
  8. [E6] Ecalle ( J.). — Six Lectures on Transseries, Analysable Functions and the Constructive Proof of Dulac's Conjecture, Bifurcations and Periodic Orbits of Vector Fields, D. Schlomiuk ed., p. 75-184, Kluwer (1993). Zbl0814.32008MR1258519
  9. [E7] Ecalle ( J. ). - Cohesive functions and weak accelerations , J. Analyse Math., Szolem Mandelbrojt Memorial Volume , Vol. 60 (1993). Zbl0808.30002MR1253230
  10. [E8] Ecalle ( J.). - Recent Advances in the Analysis of Divergence and singularities, Normal Forms and Hilbert's 16th Problem, Yu.S.Ilyashenko and C.Rousseau ed., Kluwer (2003). MR2083246
  11. [E9] Ecalle ( J.). - A Tale of Three Structures: the Arithmetics of Multizetas, the Analysis of Singularities, the Lie algebra ARI, in: Differential Equations and the Stokes Phenomenon, eds B.L.J. Braaksma, G.K. Immink, M. van der Put, J.Top, p. 89-145, World Scient. Publ. (2002). Zbl1065.11069MR2067332
  12. [EVI] Ecalle ( J.) , Vallet ( B.). - Prenormalisazation, correction, and linearization of resonant vector fields or diffeomorphisms, Prepubl. Orsay (1995). 
  13. [EV2] Ecalle ( J.), Vallet ( B.). - The arborication-coarborification transform: analytic and algebraic aspects, Ann. Fac. Sci. Toulouse, XIII (4), 2004. 
  14. [Ep] Epstein ( D.B.A. ).— Almost all subgroups of a Lie Group are free, J. Algebra, 19, p. 261-262 (1971). Zbl0222.22012MR281776
  15. [F] Faucheux ( Y. ). - L'équation 'sandwich', Mémoire de D.E.A. , Paris (1995). 
  16. [G] Glass ( A.M.G. ). — The Ubiquity of Free Groups, The Mathematical Intelligencer, Vol. 14 n°. 3, 57 ( 1992 ). Zbl0791.20001
  17. [H1] VAN DER Hoeven ( J.). - Automatic Asymptotics, Ph.D. Thesis, Ecole Polytechnique, Fr. (1997). Zbl0956.68162
  18. [H2] Van Der Hoeven ( J.). - A differential intermediate value theorem , Prepub. Math. Orsay, 2001. An abridged version appeared in: Differential Equations and the Stokes Phenomenon, eds B.L.J. Braaksma, G.K. Immink , M. van der Put, J.Top, p. 89-145, World Scient. Publ. (2002). MR2069218
  19. [H3] VAN DER Hoeven ( J.). — Complex transseries solutions to algebraic differential equations, Prepub. Math. Orsay (2001). 
  20. [LS] Lyndon and Schupp. — Combinatorial group theory, Ergebnisse89, Springer (1977). Zbl0368.20023MR577064
  21. [T] Tits ( J.). — Free subgroups in linear groups, J. Algebra, 20, p. 250-270 (1972). Zbl0236.20032MR286898
  22. [W] White ( S.). - The groups generated by x ↦ x + 1 and x ↦ xp is free, J. Algebra, 118, p. 408-422 (1988). Zbl0662.20024MR969681

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.