Hypercontractivity for perturbed diffusion semigroups

Patrick Cattiaux

Annales de la Faculté des sciences de Toulouse : Mathématiques (2005)

  • Volume: 14, Issue: 4, page 609-628
  • ISSN: 0240-2963

How to cite

top

Cattiaux, Patrick. "Hypercontractivity for perturbed diffusion semigroups." Annales de la Faculté des sciences de Toulouse : Mathématiques 14.4 (2005): 609-628. <http://eudml.org/doc/73660>.

@article{Cattiaux2005,
author = {Cattiaux, Patrick},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {Log-Sobolev inequality; Boltzmann measure},
language = {eng},
number = {4},
pages = {609-628},
publisher = {Université Paul Sabatier, Institut de Mathématiques},
title = {Hypercontractivity for perturbed diffusion semigroups},
url = {http://eudml.org/doc/73660},
volume = {14},
year = {2005},
}

TY - JOUR
AU - Cattiaux, Patrick
TI - Hypercontractivity for perturbed diffusion semigroups
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2005
PB - Université Paul Sabatier, Institut de Mathématiques
VL - 14
IS - 4
SP - 609
EP - 628
LA - eng
KW - Log-Sobolev inequality; Boltzmann measure
UR - http://eudml.org/doc/73660
ER -

References

top
  1. [1] Aida ( S.). — An estimate of the gap of spectrum of Schrödinger operators which generate hyperbounded semigroups, J. Func. Anal.185, p. 474-526 (2001). Zbl1038.60077
  2. [2] Aida ( S.) , Shigekawa ( I.). — Logarithmic Sobolev inequalities and spectral gaps: perturbation theory, J. Func. Anal.126, p. 448-475 (1994). Zbl0846.46019MR1305076
  3. [3] Ané ( C. ) , Blachère ( S.), Chafai ( D.), Fougères ( P.), Gentil ( I.), Malrieu ( F.), Roberto ( C.), Scheffer ( G.).— Sur les inégalités de Sobolev logarithmiques, volume 10 of Panoramas et Synthèses. S.M.F, Paris (2000). Zbl0982.46026
  4. [4] Bakry ( D.). — L'hypercontractivité et son utilisation en théorie des semi groupes, Ecole d'été de Probabilités de Saint-Flour. Lect. Notes Math1581, p. 1-114 (1994). Zbl0856.47026MR1307413
  5. [5] Barthe ( F. ), Cattiaux ( P.), Roberto ( C.). — Interpolated inequalities between exponential and gaussian, Orlicz hypercontractivity and application to isoperimetry, Preprint (2004). 
  6. [6] Cattiaux ( P.). — A pathwise approach of some classical inequalities, Potential Analysis20, p. 361-394 (2004). Zbl1050.47041MR2032116
  7. [7] Cattiaux ( P.), Léonard ( C.) . - Minimization of the Kullback information for general Markov processes. Séminaire de ProbasXXX, Lect. Notes Math1626, p. 283-311 (1996). Zbl0863.60073
  8. [8] Davies ( E.B. ). — Heat kernels and spectral theory , Cambridge University Press (1989 ). Zbl0699.35006MR990239
  9. [9] Deuschel ( J.D. ), Stroock ( D.W.). — Large deviations, Academic Press (1989). Zbl0705.60029MR997938
  10. [10] Gong ( F.Z. ), Wu ( L.M.).— Spectral gap of positive operators and its applications, C. R. Acad. Sci. Paris, Sér. 1, t 331, p. 983-988 (2000). Zbl0984.47030MR1809440
  11. [11] Gross ( L.). — Logarithmic Sobolev inequalities and contractivity properties of semi-groups, in Dirichlet forms, Dell'Antonio and Mosco eds, Lect. Notes Math1563, p. 54-88 (1993). Zbl0812.47037MR1292277
  12. [12] Guionnet ( A.), Zegarlinski ( B.).— Lectures on logarithmic Sobolev inequalities, Séminaire de ProbabilitésXXXVI, Lect. Notes Math1801, (2002). MR1971582
  13. [13] Kavian ( O. ), Kerkyacharian ( G.), Roynette ( B.).— Quelques remarques sur l'ultracontractivité, J. Func. Anal.111, p. 155-196 (1993). Zbl0807.47027MR1200640
  14. [14] Kunz ( A.). — On extremes of multidimensional stationary diffusion processes in euclidean norm, Preprint (2002). 
  15. [15] Kusuoka ( S.), Stroock ( D.). — Some boundedness properties of certain stationary diffusion semigroups, J. Func. Anal.60, p. 243-264 (1985). Zbl0562.60078MR777238
  16. [16] Ledoux ( M. ). — Concentration of measure and logarithmic Sobolev inequalities, Séminaire de ProbasXXXIII, Lect. Notes Math1709, p. 120-216 (1999). Zbl0957.60016MR1767995
  17. [17] Mathieu ( P.). — Quand l'inégalité Log-Sobolev implique l'inégalité de trou spectral, Séminaire de ProbasXXXII, Lect. Notes Math1686, p. 30-35 (1998). 
  18. [18] Röckner ( M.), Wang ( F.Y.). — Weak Poincaré inequalities and L2 convergence rates of Markov semigroups, J. Func. Anal.185 , p. 564-603 (2001). Zbl1009.47028
  19. [19] Rosen ( J. ).— Sobolev inequalities for weight spaces and supercontractivity, Trans. Amer. Math. Soc.222, p. 367-376 (1976). Zbl0344.46072MR425601
  20. [20] Royer ( G.). — Une initiation aux inégalités de Sobolev logarithmiques , S.M.F., Paris ( 1999). Zbl0927.60006
  21. [21] Wang ( F.Y. ).— Logarithmic Sobolev inequalities: conditions and counterexamples, J. Operator Theory46, p. 183-197 (2001). Zbl0993.58019MR1862186

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.