Flux in axiomatic potential theory. II. Duality

Bertram Walsh

Annales de l'institut Fourier (1969)

  • Volume: 19, Issue: 2, page 371-417
  • ISSN: 0373-0956

Abstract

top
This is a continuation of an earlier paper [Inventiones Math., 8 (1969), 175-221]. It is assumed that a space and a sheaf over are given, such that the pair satisfies the Brelot axioms and also satisfies, locally, the additional hypotheses of the theory of adjoint sheaves. The following subjects are considered: 1) Extension of the adjoint-sheaf theory to the case where does not admit a global potential (in particular, the case where is compact). 2) Construction of a new fine resolution of the sheaf , in which is a (complete pre-)sheaf of measures on . 3) Construction of a natural duality between the flux functional corresponds to a distinguished positive element of .

How to cite

top

Walsh, Bertram. "Flux in axiomatic potential theory. II. Duality." Annales de l'institut Fourier 19.2 (1969): 371-417. <http://eudml.org/doc/73995>.

@article{Walsh1969,
abstract = {This is a continuation of an earlier paper [Inventiones Math., 8 (1969), 175-221]. It is assumed that a space $W$ and a sheaf $\{\bf H\}$ over $W$ are given, such that the pair $(W,\{\bf H\})$ satisfies the Brelot axioms and also satisfies, locally, the additional hypotheses of the theory of adjoint sheaves. The following subjects are considered: 1) Extension of the adjoint-sheaf theory to the case where $(W,\{\bf H\})$ does not admit a global potential (in particular, the case where $W$ is compact). 2) Construction of a new fine resolution $O\rightarrow \{\bf H\}\rightarrow \{\bf R\}\rightarrow \{\bf L\}\rightarrow O$ of the sheaf $\{\bf H\}$, in which $\{\bf L\}$ is a (complete pre-)sheaf of measures on $W$. 3) Construction of a natural duality between the flux functional corresponds to a distinguished positive element of $H^*_W$.},
author = {Walsh, Bertram},
journal = {Annales de l'institut Fourier},
keywords = {partial differential equations},
language = {eng},
number = {2},
pages = {371-417},
publisher = {Association des Annales de l'Institut Fourier},
title = {Flux in axiomatic potential theory. II. Duality},
url = {http://eudml.org/doc/73995},
volume = {19},
year = {1969},
}

TY - JOUR
AU - Walsh, Bertram
TI - Flux in axiomatic potential theory. II. Duality
JO - Annales de l'institut Fourier
PY - 1969
PB - Association des Annales de l'Institut Fourier
VL - 19
IS - 2
SP - 371
EP - 417
AB - This is a continuation of an earlier paper [Inventiones Math., 8 (1969), 175-221]. It is assumed that a space $W$ and a sheaf ${\bf H}$ over $W$ are given, such that the pair $(W,{\bf H})$ satisfies the Brelot axioms and also satisfies, locally, the additional hypotheses of the theory of adjoint sheaves. The following subjects are considered: 1) Extension of the adjoint-sheaf theory to the case where $(W,{\bf H})$ does not admit a global potential (in particular, the case where $W$ is compact). 2) Construction of a new fine resolution $O\rightarrow {\bf H}\rightarrow {\bf R}\rightarrow {\bf L}\rightarrow O$ of the sheaf ${\bf H}$, in which ${\bf L}$ is a (complete pre-)sheaf of measures on $W$. 3) Construction of a natural duality between the flux functional corresponds to a distinguished positive element of $H^*_W$.
LA - eng
KW - partial differential equations
UR - http://eudml.org/doc/73995
ER -

References

top
  1. [1] H. BAUER, Harmonische Räume und ihre Potentialtheorie, Springer Lecture Notes in Mathematics 22 (1966). Zbl0142.38402
  2. [2] N. BOBOC, C. CONSTANTINESCU and A. CORNEA, Axiomatic theory of harmonic functions : Nonnegative superharmonic functions, Ann. Inst. Fourier (Grenoble) 15 (1965), 283-312. Zbl0139.06604MR32 #2603
  3. [3] G. E. BREDON, Sheaf Theory, McGraw-Hill, (1967). Zbl0158.20505MR36 #4552
  4. [4] M. BRELOT, Lectures on Potential Theory, Tata Institute, Bombay, 1960. Zbl0098.06903MR22 #9749
  5. [5] C. H. DOWKER, Lectures on Sheaf Theory, Tata Institute, Bombay, 1957. 
  6. [6] N. DUNFORD and J. T. SCHWARTZ, Linear Operators I, Interscience, New York, 1958. Zbl0084.10402MR22 #8302
  7. [7] R. C. GUNNING, Lectures on Riemann Surfaces, Princeton Univ. Press, 1966. Zbl0175.36801MR34 #7789
  8. [8] R. C. GUNNING and H. ROSSI, Analytic Functions of Several Complex Variables, Prentice-Hall, Englewood Cliffs, 1965. Zbl0141.08601MR31 #4927
  9. [9] R.-M. HERVÉ, Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel, Ann. Inst. Fourier (Grenoble) 12 (1962), 415-571. Zbl0101.08103MR25 #3186
  10. [10] P. A. LOEB, An axiomatic treatment of pairs of elliptic differential equations, Ann. Inst. Fourier (Grenoble) 16 (1966), 167-208. Zbl0172.15101MR37 #3039
  11. [11] F.-Y. MAEDA, Axiomatic treatment of full-superharmonic functions, J. Sci. Hiroshima Univ. Ser. A-1 30 (1966), 197-215. Zbl0168.09702
  12. [12] P. A. MEYER, Brelot's axiomatic theory of the Dirichlet problem and Hunt's theory, Ann. Inst. Fourier (Grenoble) 13 (1963), 357-372. Zbl0116.30404MR29 #260
  13. [13] B. RODIN and L. SARIO, Principal Functions, van Nostrand, Princeton, 1968. Zbl0159.10701MR37 #5378
  14. [14] H. SCHAEFER, Topological Vector Spaces, Macmillan, New York, 1966. Zbl0141.30503MR33 #1689
  15. [15] H. SCHAEFER, Invariant ideals of positive operators in C(X), I, Illinois J. Math. 11 (1967), 703-715. Zbl0168.11801MR36 #1996
  16. [16] B. WALSH and P. A. LOEB, Nuclearity in axiomatic potential theory, Bull. Amer. Math. Soc. 72 (1966), 685-689. Zbl0144.15503MR35 #407
  17. [17] N. BOURBAKI, Intégration, Ch. V : Intégration des Mesures, Hermann et Cie, Paris, 1956. 
  18. [18] D. HINRICHSEN, Randintegrale und nukleare Funktionenräume, Ann. Inst. Fourier (Grenoble) 17 (1967), 225-271. Zbl0165.14702MR36 #6914
  19. [19] A. DE LA PRADELLE, Approximation et caractère de quasi-analyticité dans la théorie axiomatique des fonctions harmoniques, Ann. Inst. Fourier (Grenoble) 17 (1967), 383-399. Zbl0153.15501MR37 #3040
  20. [20] H.-G. TILLMANN, Dualität in der Potentialtheorie, Port. Math. 13 (1954), 55-86. Zbl0056.33403MR16,718b
  21. [21] B. WALSH, Flux in axiomatic potential theory. I : Cohomology, Inventiones Math. 8 (1969), 175-221. Zbl0179.15203MR42 #532

NotesEmbed ?

top

You must be logged in to post comments.