Randintegrale und nukleare Funktionenraüme

Diederich Hinrichsen

Annales de l'institut Fourier (1967)

  • Volume: 17, Issue: 1, page 225-271
  • ISSN: 0373-0956

How to cite

top

Hinrichsen, Diederich. "Randintegrale und nukleare Funktionenraüme." Annales de l'institut Fourier 17.1 (1967): 225-271. <http://eudml.org/doc/73919>.

@article{Hinrichsen1967,
author = {Hinrichsen, Diederich},
journal = {Annales de l'institut Fourier},
keywords = {functional analysis},
language = {ger},
number = {1},
pages = {225-271},
publisher = {Association des Annales de l'Institut Fourier},
title = {Randintegrale und nukleare Funktionenraüme},
url = {http://eudml.org/doc/73919},
volume = {17},
year = {1967},
}

TY - JOUR
AU - Hinrichsen, Diederich
TI - Randintegrale und nukleare Funktionenraüme
JO - Annales de l'institut Fourier
PY - 1967
PB - Association des Annales de l'Institut Fourier
VL - 17
IS - 1
SP - 225
EP - 271
LA - ger
KW - functional analysis
UR - http://eudml.org/doc/73919
ER -

References

top
  1. [1] R. G. BARTLE and L. M. GRAVES, Mappings between function spaces, Trans. Amer. Math. Soc. 72 (1952), 400-413. Zbl0047.10901MR13,951i
  2. [2] H. BAUER, Konservative Abbildungen lokal-kompakter Räume, Math. Annalen 138 (1959), 398-427. Zbl0086.04503MR22 #8319
  3. [3] H. BAUER, Silovscher Rand und Dirichletsches Problem, Ann. Inst. Fourier 11 (1961), 89-136. Zbl0098.06902MR25 #443
  4. [4] H. BAUER, Axiomatische Behandlung des Dirichletschen Problems für elliptische und parabolische Differentialgleichungen, Math. Annalen 146 (1962), 1-59. Zbl0107.08003MR26 #1612
  5. [5] H. BAUER, Harmonische Räume und ihre Potentialtheorie, Lecture Notes in Math. 22 (1966), Springer-Verlag, Berlin, Heidelberg, New York. Zbl0142.38402
  6. [6] H. BAUER, Aspects of linearity in the theory of function algebras, Proceedings of a Symposium on Function Algebras, New Orleans (1964), 122-137. Zbl0201.45903MR33 #4657
  7. [7] H. S. BEAR and A. M. GLEASON, An integral formula for abstract harmonic or parabolic functions. Notices Amer. Math. Soc., 13 (1966), 348 ff. 
  8. [8] S. BERGMAN, Ueber eine in gewissen Bereichen mit Maximumfläche gültige Integraldarstellung der Funktionen zweier komplexer Variabler, Math. Z. 39 (1935), 76-94, 605-608. Zbl0010.31001JFM61.0372.01
  9. [9] S. BERGMAN, Bounds for analytic functions in domains with a distinguished boundary surface, Math. Z. 63 (1955), 173-194. Zbl0065.31204MR17,785d
  10. [10] E. BISHOP, A minimal boundary for function algebras, Pacific J. Math. 9 (1959), 629-642. Zbl0087.28503MR22 #191
  11. [11] N. BOURBAKI, Topologie générale, Chap. IX, Actual sci. et industr. 1045, Paris (1958). Zbl0085.37103
  12. [12] N. BOURBAKI, Topologie générale, Chap. X, Actual sci. et industr. 1084, Paris (1949). 
  13. [13] N. BOURBAKI, Espaces vectoriels topologiques, Chap. I-II, Actual sci. et industr. 1189, Paris (1953). Zbl0050.10703
  14. [14] N. BOURBAKI, Espaces vectoriels topologiques, Chap. III-V, Actual. sci. et industr. 1229, Paris (1955). Zbl0066.35301
  15. [15] N. BOURBAKI, Intégration, Chap. I-IV, Actual. sci. et industr. 1175, Paris (1965). 
  16. [16] N. BOURBAKI, Intégration, Chap. V, Actual sci. et industr. 1244, Paris (1956). 
  17. [17] M. BRELOT, Lectures on potential theory, Tata Inst. of Fund. Research, Bombay (1960). Zbl0098.06903MR22 #9749
  18. [18] L. BUNGART, Holomorphic functions with values in locally convex spaces and applications to integral formulas, Trans. Amer. Math. Soc. (2) 111 (1964), 317-344. Zbl0142.33902MR28 #245
  19. [19] L. BUNGART, Cauchy integral formulas and boundary kernel functions in several complex variables, Proceedings of the Conference on Complex Analysis, Minneapolis (1964), 7-18. Zbl0151.09602MR30 #4974
  20. [20] G. CHOQUET et P. A. MEYER, Existence et unicité des représentations intégrales dans les convexes compacts quelconques, Ann. Inst. Fourier 13 (1963), 139-154. Zbl0122.34602MR26 #6748
  21. [21] O. FORSTER, Funktionswerte als Randintegrale in komplexen Räumen, Math. Annalen 150 (1963), 317-324. Zbl0109.30701MR29 #1360
  22. [22] A. M. GLEASON, The abstract theorem of Cauchy-Weil, Pacific J. Math. 12 (1962), 511-525. Zbl0117.09302MR26 #5186
  23. [23] A. GROTHENDIECK, Produits tensoriels topologiques et espaces nucléaires, Mem. Am. Math. Soc. 16 (1955), 191 + 140 pp. Zbl0064.35501MR17,763c
  24. [24] R. C. GUNNING and H. ROSSI, Analytic functions of several variables, Englewood Cliffs, N. J., (1965). Zbl0141.08601MR31 #4927
  25. [25] D. HINRICHSEN, Adapted integral representations by measures on Choquet boundaries, Bull. Amer. Math. Soc. 72 (1966), 888-891. Zbl0146.37101MR33 #5931
  26. [26] K. HOFFMAN and H. ROSSI, The minimal boundary for an analytic polyhedron, Pacific J. Mat. 12 (1962), 1347-53. Zbl0154.33305MR27 #4952
  27. [27] P.A. LOEB and B. WALSH, The equivalence of Harnack's principle and Harnack's inequality in the axiomatic system of Brelot, Ann. Inst. Fourier 15 (1965), 597-600. Zbl0132.33802MR32 #7773
  28. [28] G. LUMER, Analytic functions and Dirichlet problem, Bull. Amer. Math. Soc. 70 (1964), 98-104. Zbl0123.30903MR28 #1509
  29. [29] P. A. MEYER, Probabilités et potentiel, Publications Inst. math. Université de Strasbourg XIV, Actual sci. et industr. 1318, Paris (1966). Zbl0138.10402MR34 #5118
  30. [30] A. PIETSCH, Nukleare lokalkonvexe Räume, Schriftenreihe Institute f. Math. bei der dt. Akad. d. Wiss. zu Berlin, Reihe A, H. 1, Berlin (1965). Zbl0152.32302MR31 #6114
  31. [31] B. WALSH and P. A. LOEB, Nuclearity in axiomatic potential theory, Bull. Amer. Math. Soc., 72 (1966), 685-689. Zbl0144.15503MR35 #407
  32. [32] A. WEIL, L'intégrale de Cauchy et les fonctions de plusieurs variables, Math. Annalen 111 (1935), 178-182. Zbl0011.12301JFM61.0371.03

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.