Fegen und Dünnheit mit Anwendungen auf die Laplace-und Wärmeleitungsgleichung

Wolfhard Hansen

Annales de l'institut Fourier (1971)

  • Volume: 21, Issue: 1, page 79-121
  • ISSN: 0373-0956

Abstract

top
Several properties of balayage of measures in harmonic spaces are studied. In particular, characterisations of thinness of subsets are given. For the heat equation the following result is obtained: suppose that E = R m + 1 is given the presheaf of solutions of i = 1 m u x i = u x m + 1 and B is a subset of R m × [ - , 0 ] satisfying { ( α x , α 2 t ) : ( x , t ) B , x R m , t R } B for α > 0 arbitrarily small. Then B is thin at 0 if and only if B is polar. Similar result for the Laplace equation. At last the reduced of measures is defined and several approximation theorems on reducing and balayage of measures are proved.

How to cite

top

Hansen, Wolfhard. "Fegen und Dünnheit mit Anwendungen auf die Laplace-und Wärmeleitungsgleichung." Annales de l'institut Fourier 21.1 (1971): 79-121. <http://eudml.org/doc/74030>.

@article{Hansen1971,
author = {Hansen, Wolfhard},
journal = {Annales de l'institut Fourier},
language = {ger},
number = {1},
pages = {79-121},
publisher = {Association des Annales de l'Institut Fourier},
title = {Fegen und Dünnheit mit Anwendungen auf die Laplace-und Wärmeleitungsgleichung},
url = {http://eudml.org/doc/74030},
volume = {21},
year = {1971},
}

TY - JOUR
AU - Hansen, Wolfhard
TI - Fegen und Dünnheit mit Anwendungen auf die Laplace-und Wärmeleitungsgleichung
JO - Annales de l'institut Fourier
PY - 1971
PB - Association des Annales de l'Institut Fourier
VL - 21
IS - 1
SP - 79
EP - 121
LA - ger
UR - http://eudml.org/doc/74030
ER -

References

top
  1. [1] H. BAUER, Harmonische Räume und ihre Potentialtheorie. Lecture Notes in Mathematics 22, Berlin-Heidelberg New-York : Springer 1966. Zbl0142.38402
  2. [2] H. BAUER, Harmonic spaces and associated Markov processes. Centro Internazionale Matematico Estivo 1969. 
  3. [3] R.M. BLUMENTHAL and R.K. GETOOR, Markov processes and potential theory, New York : Academic Press 1968. Zbl0169.49204MR41 #9348
  4. [4] C. CONSTANTINESCU, Some properties of the balayage of measures on a harmonic space, Ann. Inst. Fourier 17/1 (1967), 273-293. Zbl0159.40804MR37 #3033
  5. [5] E.G. EFFROS and J.L. KAZDAN, On the Dirichlet problem for the heat equation, Erscheint demnächst. Zbl0216.12702
  6. [6] W. HANSEN, Potentialtheorie harmonischer Kerne, In Seminar über Potentialtheorie, Lecture Notes in Mathematics 69, Berlin-Heidelberg-New York : Springer 1968. 
  7. [7] L.L. HELMS, Introduction to potential theory, Wiley-Interscience 1969. Zbl0188.17203MR41 #5638
  8. [8] R.M. HERVE, Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potential, Ann. Inst. Fourier 12, 415-571 (1962). Zbl0101.08103MR25 #3186
  9. [9] P.A. MEYER, Processus de Markov, Lecture Notes in Mathematics 26, Berlin-Heidelberg-New York : Springer 1967. Zbl0189.51403MR36 #2219

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.