Some remarks on convolution equations

C. A. Berenstein; M. A. Dostal

Annales de l'institut Fourier (1973)

  • Volume: 23, Issue: 1, page 55-73
  • ISSN: 0373-0956

Abstract

top
Using a description of the topology of the spaces E ' ( Ω ) ( Ω open convex subset of R n ) via the Fourier transform, namely their analytically uniform structures, we arrive at a formula describing the convex hull of the singular support of a distribution T , T E ' . We give applications to a class of distributions T satisfying cv. sing. supp. S * T = cv. sing. supp. S + cv. sing. supp. T for all S E ' .

How to cite

top

Berenstein, C. A., and Dostal, M. A.. "Some remarks on convolution equations." Annales de l'institut Fourier 23.1 (1973): 55-73. <http://eudml.org/doc/74113>.

@article{Berenstein1973,
abstract = {Using a description of the topology of the spaces $\{\bf E\}^\{\prime \}(\Omega )$ ($\Omega $ open convex subset of $R^n$) via the Fourier transform, namely their analytically uniform structures, we arrive at a formula describing the convex hull of the singular support of a distribution $T$, $T\in \{\bf E\}^\{\prime \}$. We give applications to a class of distributions $T$ satisfying\begin\{\}\text\{cv.\} \text\{sing.\} \text\{supp.\}\, S*T=\, \text\{cv.\} \text\{sing.\} \text\{supp.\}\, S+ \,\text\{cv.\} \text\{sing.\} \text\{supp.\}\, T\end\{\}for all $S\in \{\bf E\}^\{\prime \}$.},
author = {Berenstein, C. A., Dostal, M. A.},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {1},
pages = {55-73},
publisher = {Association des Annales de l'Institut Fourier},
title = {Some remarks on convolution equations},
url = {http://eudml.org/doc/74113},
volume = {23},
year = {1973},
}

TY - JOUR
AU - Berenstein, C. A.
AU - Dostal, M. A.
TI - Some remarks on convolution equations
JO - Annales de l'institut Fourier
PY - 1973
PB - Association des Annales de l'Institut Fourier
VL - 23
IS - 1
SP - 55
EP - 73
AB - Using a description of the topology of the spaces ${\bf E}^{\prime }(\Omega )$ ($\Omega $ open convex subset of $R^n$) via the Fourier transform, namely their analytically uniform structures, we arrive at a formula describing the convex hull of the singular support of a distribution $T$, $T\in {\bf E}^{\prime }$. We give applications to a class of distributions $T$ satisfying\begin{}\text{cv.} \text{sing.} \text{supp.}\, S*T=\, \text{cv.} \text{sing.} \text{supp.}\, S+ \,\text{cv.} \text{sing.} \text{supp.}\, T\end{}for all $S\in {\bf E}^{\prime }$.
LA - eng
UR - http://eudml.org/doc/74113
ER -

References

top
  1. [1] A.D. ALEKSANDROV, “Die innere Geometrie der konvexen Flächen”, Berlin, 1955. Zbl0065.15102
  2. [2] I.Ja. BAKEL'MAN, “Geometric methods of solutions of elliptic equations” (in Russian), Moscow, 1964. 
  3. [3] C.A. BERENSTEIN and M.A. DOSTAL, Topological properties of the analytically uniform spaces, Trans. Amer. Math. Soc., 154 (1971), 493-513. Zbl0208.37403MR53 #1252
  4. [4] C.A. BERENSTEIN and M.A. DOSTAL, Fourier transforms of the Beurling classes Dw, E'w', Bull. Amer. Math. Soc., 77 (1971), 963-967. Zbl0229.46038MR44 #5769
  5. [5] C.A. BERENSTEIN and M.A. DOSTAL, “Analytically uniform spaces and their applications to convolution equations”, Lecture Notes in Math., vol. 256, Springer-Verlag, 1972. Zbl0237.47025MR58 #12344
  6. [6] N. BOURBAKI, “Espaces vectoriels topologiques”, Eléments de mathématique, Livre V, Hermann et Cie, Paris, 1953, 1955. 
  7. [7] M.A. DOSTAL, On Fourier image of the singular support of a distribution, Czech. Math. J., 16 (1966), 231-237. Zbl0151.18203MR33 #4593
  8. [8] M.A. DOSTAL, An analogue of a theorem of Vladimir Bernstein and its applications to singular supports of distributions, Proc. London Math. Soc., 19 (1969), p. 553-576. Zbl0176.10302MR40 #3302
  9. [9] M.A. DOSTAL, A complex characterization of the Schwartz space D ( A T T ), Math. Ann., 195 (1972), p. 175-191. Zbl0213.40002MR45 #888
  10. [10] L. EHRENPREIS, Solutions of some problems of division I, Amer. J. Math. 76 (1954), 883-893. Zbl0056.10601MR16,834a
  11. [11] L. EHRENPREIS, Solutions of some problems of division II, Amer. J. Math., 77 (1955), 286-292. Zbl0064.11504MR16,1123a
  12. [12] L. HÖRMANDER, On the range of convolution operators, Ann. Math., 76 (1962), 148-170. Zbl0109.08501MR25 #5379
  13. [13] L. HÖRMANDER, Supports and singular supports of convolutions, Acta Math., 110 (1965), 279-302. Zbl0188.19406MR27 #4070
  14. [14] B. MALGRANGE, Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution, Ann. Inst. Fourier, 6 (1955-1956), 271-355. Zbl0071.09002MR19,280a
  15. [15] B. MALGRANGE, Sur la propagation de la régularité des solutions des équations à coefficients constants, Bull. Math. Soc. Sci. Math. Phys. R.P. Roumaine, 3 (1959), 432-440. Zbl0109.32002
  16. [16] K. REIDEMEISTER, Uber die singulären Randpunkte eines konvexen Körpers, Math. Ann., 83 (1921), 116-118. Zbl48.0835.03JFM48.0835.03
  17. [17] W. RUDIN, “Function theory in polydisks”, W.A. Benjamin, Inc., New York, 1969. Zbl0177.34101
  18. [18] L. SCHWARTZ, “Théorie des distributions”, I, II, Hermann et Cie, Paris, 1950, 1953. Zbl0037.07301

NotesEmbed ?

top

You must be logged in to post comments.