Integral representation for a class of multiply superharmonic functions

Kohur Gowrisankaran

Annales de l'institut Fourier (1973)

  • Volume: 23, Issue: 4, page 105-143
  • ISSN: 0373-0956

Abstract

top
Let Ω 1 , ... , Ω n be harmonic spaces of Brelot with countable base of completely determining domains. The elements of a subcone C of the cone of positive n -superharmonic functions in Ω 1 × ... × Ω n is shown to have an integral representation with the aid of Radon measures on the extreme elements belonging to a compact base of C . The extreme elements are shown to be the product of extreme superharmonic functions on the component spaces and the measure representing each element is shown to be unique. Necessary and sufficient conditions for a positive n -superharmonic function to belong to C are given.

How to cite

top

Gowrisankaran, Kohur. "Integral representation for a class of multiply superharmonic functions." Annales de l'institut Fourier 23.4 (1973): 105-143. <http://eudml.org/doc/74144>.

@article{Gowrisankaran1973,
abstract = {Let $\Omega _1,\ldots ,\Omega _n$ be harmonic spaces of Brelot with countable base of completely determining domains. The elements of a subcone $\{\bf C\}$ of the cone of positive $n$-superharmonic functions in $\Omega _1\times \ldots \times \Omega _n$ is shown to have an integral representation with the aid of Radon measures on the extreme elements belonging to a compact base of $\{\bf C\}$. The extreme elements are shown to be the product of extreme superharmonic functions on the component spaces and the measure representing each element is shown to be unique. Necessary and sufficient conditions for a positive $n$-superharmonic function to belong to $\{\bf C\}$ are given.},
author = {Gowrisankaran, Kohur},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {4},
pages = {105-143},
publisher = {Association des Annales de l'Institut Fourier},
title = {Integral representation for a class of multiply superharmonic functions},
url = {http://eudml.org/doc/74144},
volume = {23},
year = {1973},
}

TY - JOUR
AU - Gowrisankaran, Kohur
TI - Integral representation for a class of multiply superharmonic functions
JO - Annales de l'institut Fourier
PY - 1973
PB - Association des Annales de l'Institut Fourier
VL - 23
IS - 4
SP - 105
EP - 143
AB - Let $\Omega _1,\ldots ,\Omega _n$ be harmonic spaces of Brelot with countable base of completely determining domains. The elements of a subcone ${\bf C}$ of the cone of positive $n$-superharmonic functions in $\Omega _1\times \ldots \times \Omega _n$ is shown to have an integral representation with the aid of Radon measures on the extreme elements belonging to a compact base of ${\bf C}$. The extreme elements are shown to be the product of extreme superharmonic functions on the component spaces and the measure representing each element is shown to be unique. Necessary and sufficient conditions for a positive $n$-superharmonic function to belong to ${\bf C}$ are given.
LA - eng
UR - http://eudml.org/doc/74144
ER -

References

top
  1. [1] M. BRELOT, Lectures on Axiomatic Potential Theory. Lecture Notes. Tata Institute of Fundamental Research. Bombay, 1960. Zbl0098.06903MR22 #9749
  2. [2] M. BRELOT, "Axiomatique des Fonctions Harmoniques et Surharmoniques dans un Espace Localement Compact". Séminaire Théorie du Potentiel II. I.H.P., Paris, 1958. 
  3. [3] R. CAIROLI, "Une Représentation Intégrale pour Fonction Séparément Excessive", Annales Inst. Fourier, 18 (1968), 317-338. Zbl0165.52601MR41 #4650
  4. [4] A. E. DRINKWATER, "Integral Representation for Multiply Superharmonic Functions". Ph. D. Thesis. McGill University, Montreal, 1972. Zbl0286.31010
  5. [5] K. GOWRISANKARAN, "Multiply Harmonic Functions". Nagoya Math. J., Vol. 28, 1966, 27-48. Zbl0148.10501MR35 #410
  6. [6] K. GOWRISANKARAN, "Measurability of Functions in Product Spaces", Proc. Amer. Math. Soc., 31 (1972), 485-488. Zbl0229.28006MR45 #496
  7. [7] K. GOWRISANKARAN, "Iterated Fine Limits and Iterated Non-Tangential Limits", Trans. Amer. Math. Soc. 173 (1972), 71-92. Zbl0226.31013MR47 #489
  8. [8] R. M. HERVÉ, "Recherches Axiomatiques sur la Théorie des Fonctions Surharmoniques et du Potentiel", Annales Inst. Fourier, t. 12 (1962), 415-571. Zbl0101.08103MR25 #3186
  9. [9] L. SCHWARTZ, Radon Measures on General Topological Spaces, Tata Inst. of Fund. Research Monographs (to appear). Zbl0298.28001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.