On extensions of holomorphic functions satisfying a polynomial growth condition on algebraic varieties in 𝐂 n

Jean Erik Björk

Annales de l'institut Fourier (1974)

  • Volume: 24, Issue: 4, page 157-165
  • ISSN: 0373-0956

Abstract

top
Let V be an algebraic variety in C n and when k 0 is an integer then Pol ( V , k ) denotes all holomorphic functions f ( z ) on V satisfying | f ( z ) | C f ( 1 + | z | ) k for all z V and some constant C f . We estimate the least integer ϵ ( V , k ) such that every f Pol ( V , k ) admits an extension from V into C n by a polynomial P ( z 1 , ... , z n ) , of degree k + ϵ ( V , k ) at most. In particular lim k > ϵ ( V , k ) is related to cohomology groups with coefficients in coherent analytic sheaves on V . The existence of the finite integer ϵ ( V , k ) is for example an easy consequence of Kodaira’s Vanishing Theorem.

How to cite

top

Björk, Jean Erik. "On extensions of holomorphic functions satisfying a polynomial growth condition on algebraic varieties in ${\bf C}^n$." Annales de l'institut Fourier 24.4 (1974): 157-165. <http://eudml.org/doc/74195>.

@article{Björk1974,
abstract = {Let $V$ be an algebraic variety in $C^n$ and when $k\ge 0$ is an integer then $\{\rm Pol\}\, (V,k)$ denotes all holomorphic functions $f(z)$ on $V$ satisfying $\vert f(z)\vert \le C_f(1+\vert z\vert )^k$ for all $z\in V$ and some constant $C_f$. We estimate the least integer $\varepsilon (V,k)$ such that every $f\in \,\{\rm Pol\}\,(V,k)$ admits an extension from $V$ into $C^n$ by a polynomial $P(z_1,\ldots ,z_n)$, of degree $k+\varepsilon (V,k)$ at most. In particular $\lim _\{k&gt;\infty \}\varepsilon (V,k)$ is related to cohomology groups with coefficients in coherent analytic sheaves on $V$. The existence of the finite integer $\varepsilon (V,k)$ is for example an easy consequence of Kodaira’s Vanishing Theorem.},
author = {Björk, Jean Erik},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {4},
pages = {157-165},
publisher = {Association des Annales de l'Institut Fourier},
title = {On extensions of holomorphic functions satisfying a polynomial growth condition on algebraic varieties in $\{\bf C\}^n$},
url = {http://eudml.org/doc/74195},
volume = {24},
year = {1974},
}

TY - JOUR
AU - Björk, Jean Erik
TI - On extensions of holomorphic functions satisfying a polynomial growth condition on algebraic varieties in ${\bf C}^n$
JO - Annales de l'institut Fourier
PY - 1974
PB - Association des Annales de l'Institut Fourier
VL - 24
IS - 4
SP - 157
EP - 165
AB - Let $V$ be an algebraic variety in $C^n$ and when $k\ge 0$ is an integer then ${\rm Pol}\, (V,k)$ denotes all holomorphic functions $f(z)$ on $V$ satisfying $\vert f(z)\vert \le C_f(1+\vert z\vert )^k$ for all $z\in V$ and some constant $C_f$. We estimate the least integer $\varepsilon (V,k)$ such that every $f\in \,{\rm Pol}\,(V,k)$ admits an extension from $V$ into $C^n$ by a polynomial $P(z_1,\ldots ,z_n)$, of degree $k+\varepsilon (V,k)$ at most. In particular $\lim _{k&gt;\infty }\varepsilon (V,k)$ is related to cohomology groups with coefficients in coherent analytic sheaves on $V$. The existence of the finite integer $\varepsilon (V,k)$ is for example an easy consequence of Kodaira’s Vanishing Theorem.
LA - eng
UR - http://eudml.org/doc/74195
ER -

References

top
  1. [1] P. A. GRIFFITHS, Function theory of finite order on algebraic varieties, Journ. of Diff. Geom., 6 (1972), 285-306. Zbl0269.14002MR46 #3829
  2. [2] L. EHRENPREIS, A fundamental principle for systems of linear differential equations with constant coefficients and some of its applications, Proc. International Symp. on Linear Spaces, Jerusalem (1960). Zbl0117.33403
  3. [3] L. EHRENPREIS, Fourier analysis in several complex variables, Pure and Appl. Math., 17 (1970), Wiley-Intersci. Publ. Zbl0195.10401MR44 #3066
  4. [4] L. HÖRMANDER, L2-estimates and existence theorems for the &lt;ATT&gt;-operator, Acta Math., 113 (1965), 89-152. Zbl0158.11002
  5. [5] R. NARASIMHAN, Cohomology with bounds on complex spaces, Springer Lecture Notes, 155 (1970), 141-150. Zbl0207.38002MR43 #5059
  6. [6] V. P. PALAMODOV, Linear differential operators with constant coefficients, Springer-Verlag, 16 (1970). Zbl0191.43401MR41 #8793
  7. [7] J.-P. SERRE, Géométrie analytique et géométrie algébrique, Ann. Inst. Fourier, 6 (1955), 1-42. Zbl0075.30401MR18,511a
  8. [8] H. SKODA, dʺ-cohomologie à croissance lente dans Cn, Ann. Sci. de l'École Norm. Sup., 4 (1971), 97-121. Zbl0211.40402MR44 #4241
  9. [9] H. SKODA, Applications des techniques à L2 à la théorie des idéaux d'une algèbre de fonctions holomorphes avec poids, Ann. Sci. de l'École Norm. Sup., 5 (1972), 545-579. Zbl0254.32017MR48 #11571

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.