On extensions of holomorphic functions satisfying a polynomial growth condition on algebraic varieties in
Annales de l'institut Fourier (1974)
- Volume: 24, Issue: 4, page 157-165
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBjörk, Jean Erik. "On extensions of holomorphic functions satisfying a polynomial growth condition on algebraic varieties in ${\bf C}^n$." Annales de l'institut Fourier 24.4 (1974): 157-165. <http://eudml.org/doc/74195>.
@article{Björk1974,
abstract = {Let $V$ be an algebraic variety in $C^n$ and when $k\ge 0$ is an integer then $\{\rm Pol\}\, (V,k)$ denotes all holomorphic functions $f(z)$ on $V$ satisfying $\vert f(z)\vert \le C_f(1+\vert z\vert )^k$ for all $z\in V$ and some constant $C_f$. We estimate the least integer $\varepsilon (V,k)$ such that every $f\in \,\{\rm Pol\}\,(V,k)$ admits an extension from $V$ into $C^n$ by a polynomial $P(z_1,\ldots ,z_n)$, of degree $k+\varepsilon (V,k)$ at most. In particular $\lim _\{k>\infty \}\varepsilon (V,k)$ is related to cohomology groups with coefficients in coherent analytic sheaves on $V$. The existence of the finite integer $\varepsilon (V,k)$ is for example an easy consequence of Kodaira’s Vanishing Theorem.},
author = {Björk, Jean Erik},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {4},
pages = {157-165},
publisher = {Association des Annales de l'Institut Fourier},
title = {On extensions of holomorphic functions satisfying a polynomial growth condition on algebraic varieties in $\{\bf C\}^n$},
url = {http://eudml.org/doc/74195},
volume = {24},
year = {1974},
}
TY - JOUR
AU - Björk, Jean Erik
TI - On extensions of holomorphic functions satisfying a polynomial growth condition on algebraic varieties in ${\bf C}^n$
JO - Annales de l'institut Fourier
PY - 1974
PB - Association des Annales de l'Institut Fourier
VL - 24
IS - 4
SP - 157
EP - 165
AB - Let $V$ be an algebraic variety in $C^n$ and when $k\ge 0$ is an integer then ${\rm Pol}\, (V,k)$ denotes all holomorphic functions $f(z)$ on $V$ satisfying $\vert f(z)\vert \le C_f(1+\vert z\vert )^k$ for all $z\in V$ and some constant $C_f$. We estimate the least integer $\varepsilon (V,k)$ such that every $f\in \,{\rm Pol}\,(V,k)$ admits an extension from $V$ into $C^n$ by a polynomial $P(z_1,\ldots ,z_n)$, of degree $k+\varepsilon (V,k)$ at most. In particular $\lim _{k>\infty }\varepsilon (V,k)$ is related to cohomology groups with coefficients in coherent analytic sheaves on $V$. The existence of the finite integer $\varepsilon (V,k)$ is for example an easy consequence of Kodaira’s Vanishing Theorem.
LA - eng
UR - http://eudml.org/doc/74195
ER -
References
top- [1] P. A. GRIFFITHS, Function theory of finite order on algebraic varieties, Journ. of Diff. Geom., 6 (1972), 285-306. Zbl0269.14002MR46 #3829
- [2] L. EHRENPREIS, A fundamental principle for systems of linear differential equations with constant coefficients and some of its applications, Proc. International Symp. on Linear Spaces, Jerusalem (1960). Zbl0117.33403
- [3] L. EHRENPREIS, Fourier analysis in several complex variables, Pure and Appl. Math., 17 (1970), Wiley-Intersci. Publ. Zbl0195.10401MR44 #3066
- [4] L. HÖRMANDER, L2-estimates and existence theorems for the <ATT>-operator, Acta Math., 113 (1965), 89-152. Zbl0158.11002
- [5] R. NARASIMHAN, Cohomology with bounds on complex spaces, Springer Lecture Notes, 155 (1970), 141-150. Zbl0207.38002MR43 #5059
- [6] V. P. PALAMODOV, Linear differential operators with constant coefficients, Springer-Verlag, 16 (1970). Zbl0191.43401MR41 #8793
- [7] J.-P. SERRE, Géométrie analytique et géométrie algébrique, Ann. Inst. Fourier, 6 (1955), 1-42. Zbl0075.30401MR18,511a
- [8] H. SKODA, dʺ-cohomologie à croissance lente dans Cn, Ann. Sci. de l'École Norm. Sup., 4 (1971), 97-121. Zbl0211.40402MR44 #4241
- [9] H. SKODA, Applications des techniques à L2 à la théorie des idéaux d'une algèbre de fonctions holomorphes avec poids, Ann. Sci. de l'École Norm. Sup., 5 (1972), 545-579. Zbl0254.32017MR48 #11571
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.