On the Green type kernels on the half space in n

Masayuki Itô

Annales de l'institut Fourier (1978)

  • Volume: 28, Issue: 2, page 85-105
  • ISSN: 0373-0956

Abstract

top
We characterize the Hunt convolution kernels χ on R n ( n 2 ) whose the Green type kernels on D = { ( x 1 , ... , x n ) R n ; x 1 > 0 } , V χ : C K ( D ) f ( χ * f - χ * χ ) D , satisfy the domination principle. We write f ( x 1 , x 2 , ... , x n ) = f ( - x 1 , x 2 , ... , x n ) and ( · ) D the restriction of ( · ) to D . This gives that the question raised by H.L. Jackson is affirmatively solved.

How to cite

top

Itô, Masayuki. "On the Green type kernels on the half space in ${\mathbb {R}}^n$." Annales de l'institut Fourier 28.2 (1978): 85-105. <http://eudml.org/doc/74362>.

@article{Itô1978,
abstract = {We characterize the Hunt convolution kernels $\chi $ on $\{\bf R\}^n$ ($n\ge 2$) whose the Green type kernels on $D = \lbrace (x_1,\ldots , x_n) \in \{\bf R\}^n$; $x_1&gt;0\rbrace $, $V_\chi :C_\{\bf K\}(D) \ni f $$(\chi * f - \chi * \bar\{\chi \})_D$, satisfy the domination principle. We write\begin\{\}\bar\{f\} (x\_1,x\_2,\ldots , x\_n) = f (-x\_1,x\_2,\ldots , x\_n)\end\{\}and $(~\cdot ~)_D$ the restriction of $(~\cdot ~)$ to $D$. This gives that the question raised by H.L. Jackson is affirmatively solved.},
author = {Itô, Masayuki},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {2},
pages = {85-105},
publisher = {Association des Annales de l'Institut Fourier},
title = {On the Green type kernels on the half space in $\{\mathbb \{R\}\}^n$},
url = {http://eudml.org/doc/74362},
volume = {28},
year = {1978},
}

TY - JOUR
AU - Itô, Masayuki
TI - On the Green type kernels on the half space in ${\mathbb {R}}^n$
JO - Annales de l'institut Fourier
PY - 1978
PB - Association des Annales de l'Institut Fourier
VL - 28
IS - 2
SP - 85
EP - 105
AB - We characterize the Hunt convolution kernels $\chi $ on ${\bf R}^n$ ($n\ge 2$) whose the Green type kernels on $D = \lbrace (x_1,\ldots , x_n) \in {\bf R}^n$; $x_1&gt;0\rbrace $, $V_\chi :C_{\bf K}(D) \ni f $$(\chi * f - \chi * \bar{\chi })_D$, satisfy the domination principle. We write\begin{}\bar{f} (x_1,x_2,\ldots , x_n) = f (-x_1,x_2,\ldots , x_n)\end{}and $(~\cdot ~)_D$ the restriction of $(~\cdot ~)$ to $D$. This gives that the question raised by H.L. Jackson is affirmatively solved.
LA - eng
UR - http://eudml.org/doc/74362
ER -

References

top
  1. [1] A. BEURLING and J. DENY, Dirichlet spaces, Proc. Nat. Acad. U.S.A., 45 (1959), 208-215. Zbl0089.08201MR21 #5098
  2. [2] J. DENY, Éléments de la théorie du potentiel par rapport à un noyau de Hunt, Sém. Brelot-Choquet-Deny (Théorie du potentiel), 5e année, 1960-1961, n° 8. 
  3. [3] J. DENY, Noyaux de convolution de Hunt et noyaux associés à une famille fondamentale, Ann. Inst. Fourier (Grenoble), 12 (1962), 643-667. Zbl0101.08302MR25 #3189
  4. [4] M. ITÔ, Sur la régularité des noyaux de Dirichlet, C.R.A.S. Paris, 286 (1969), 867-868. Zbl0174.16001MR39 #3238
  5. [5] M. ITÔ, Sur la famille sous-ordonnée au noyau de convolution de Hunt donné, Nagoya Math. J., 51 (1973), 45-56. Zbl0268.31008MR48 #4336
  6. [6] M. ITÔ, Sur le principe relatif de domination pour les noyaux de convolution, Hiroshima Math. J., 5 (1975), 293-350. Zbl0335.31007MR52 #8469
  7. [7] M. ITÔ, Sur les noyaux de Frostman-Kunugui et les noyaux de Dirichlet, Ann. Inst. Fourier (Grenoble), 27, 3 (1977), 45-95. Zbl0353.42016MR57 #6476
  8. [8] M. KISHI, Maximum principle in the potential theory, Nagoya Math. J., 23 (1963), 165-187. Zbl0141.10402MR29 #268
  9. [9] M. RIESZ, Intégrales de Riemann-Liouville et potentiels, Acta Sc. Math., Szeged, 9 (1938), 1-42. Zbl0018.40704JFM64.0476.03

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.