Unités cyclotomiques, unités semi-locales et -extensions. II

Roland Gillard

Annales de l'institut Fourier (1979)

  • Volume: 29, Issue: 4, page 1-15
  • ISSN: 0373-0956

Abstract

top
Let K an abelian number field, a prime number, prime to [ K : Q ] , Y n the quotient of the group of semi-local units in K ( 1 n ) by the group of cyclotomic units. By giving the Galois structure of lim Y n , we generalise a theorem of Iwasawa and use this result for comparing classical conjectures about projective limits of class groups.

How to cite

top

Gillard, Roland. "Unités cyclotomiques, unités semi-locales et ${\mathbb {Z}}_\ell $-extensions. II." Annales de l'institut Fourier 29.4 (1979): 1-15. <http://eudml.org/doc/74431>.

@article{Gillard1979,
abstract = {Soient $K$ un corps abélien réel, $\ell $ un nombre premier, premier à $[K:\{\bf Q\}]$ et $Y_n$ le quotient du groupe des unités semi-locales de $K(\@root \{\ell ^n\} \of \{1\})$ par celui des unités cyclotomiques : on donne la structure galoisienne de la limite projective des $Y_n$, généralisant un théorème d’Iwasawa, et on applique ceci à la comparaison de conjecture classique sur la limite projective des groupes de classes.},
author = {Gillard, Roland},
journal = {Annales de l'institut Fourier},
keywords = {abelian real field; group of units; cyclotomic unit; Galois group},
language = {fre},
number = {4},
pages = {1-15},
publisher = {Association des Annales de l'Institut Fourier},
title = {Unités cyclotomiques, unités semi-locales et $\{\mathbb \{Z\}\}_\ell $-extensions. II},
url = {http://eudml.org/doc/74431},
volume = {29},
year = {1979},
}

TY - JOUR
AU - Gillard, Roland
TI - Unités cyclotomiques, unités semi-locales et ${\mathbb {Z}}_\ell $-extensions. II
JO - Annales de l'institut Fourier
PY - 1979
PB - Association des Annales de l'Institut Fourier
VL - 29
IS - 4
SP - 1
EP - 15
AB - Soient $K$ un corps abélien réel, $\ell $ un nombre premier, premier à $[K:{\bf Q}]$ et $Y_n$ le quotient du groupe des unités semi-locales de $K(\@root {\ell ^n} \of {1})$ par celui des unités cyclotomiques : on donne la structure galoisienne de la limite projective des $Y_n$, généralisant un théorème d’Iwasawa, et on applique ceci à la comparaison de conjecture classique sur la limite projective des groupes de classes.
LA - fre
KW - abelian real field; group of units; cyclotomic unit; Galois group
UR - http://eudml.org/doc/74431
ER -

References

top
  1. [1] N. BOURBAKI, Éléments de mathématique, Algèbre commutative, Chap. 7, Hermann, Paris, 1965. Zbl0141.03501
  2. [2] J. COATES, p-adic L-functions and Iwasawa's theory, Durham conference on Algebraic Number Theory, edited by A. Fröhlich, Academic Press, Londres, 1977. Zbl0393.12027MR57 #276
  3. [3] J. COATES et S. LICHTENBAUM, On l-adic zeta functions, Ann. of Math., 98 (1973), 498-550. Zbl0279.12005MR48 #8445
  4. [4] J. COATES et A. WILES, On p-adic L-functions and elliptic units, J. Austral. Math. Soc., series A 26 (1978), 1-25. Zbl0442.12007MR80a:12007
  5. [5] R. COLEMAN, Some modules attached to Lubin-Tate groups, à paraître. 
  6. [6] B. FERRERO, Iwasawa invariants of abelian number fields, Math. Ann., 234 (1978), 9-24. Zbl0347.12004MR58 #5584
  7. [7] B. FERRERO et L. WASHINGTON, The Iwasawa invariant µp vanishes for abelian number fields, Ann. of Math., à paraître. Zbl0443.12001
  8. [8] R. GILLARD, Unités cyclotomiques, unités semi-locales et Zl-extensions, Ann. Inst. Fourier, t. 29, fasc. 1 (1979), 49-79. Zbl0387.12002MR81e:12005a
  9. [9] R. GILLARD, Remarques sur les unités cyclotomiques et les unités elliptiques, J. of Numbers Theory, 11, 1 (1979), 21-48. Zbl0405.12008MR80j:12004
  10. [10] R. GREENBERG, On p-adic L-functions and cyclotomic fields, Nagoya Math. J., 56 (1974), 61-77. Zbl0315.12008MR50 #12984
  11. [11] R. GREENBERG, On p-adic L-functions and cyclotomic fields II, Nagoya Math. J., 67 (1977), 139-158. Zbl0373.12007MR56 #2964
  12. [12] R. GREENBERG, On 2-adic L-functions and cyclotomic invariants, Math. Zeit., 159 (1978), 37-45. Zbl0354.12014MR57 #16263
  13. [13] K. IWASAWA, On some modules in the theory of cyclotomic fields, J. Math. Soc. Japan, vol. 16, n° 1, (1964), 42-82. Zbl0125.29207MR35 #6646
  14. [14] K. IWASAWA, On Zl-extensions of algebraic number fields, Ann. of Math., 98 (1973), 246-326. Zbl0285.12008MR50 #2120
  15. [15] K. IWASAWA, Lectures on p-adic L-functions, Ann. Math. Studies, 74, Princeton Univ. Press, 1972. Zbl0236.12001MR50 #12974
  16. [16] S. LANG, Cyclotomic fields, Springer Verlag, 1978. Zbl0395.12005MR58 #5578

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.