Pseudo-laplaciens. I

Yves Colin de Verdière

Annales de l'institut Fourier (1982)

  • Volume: 32, Issue: 3, page 275-286
  • ISSN: 0373-0956

Abstract

top
We construct, on a 2 or 3-dimensional Riemannian manifold, the self-adjoint extensions Δ α , x 0 ( α R / π Z ) of the Laplace operator restricted to the functions vanishing in some neigbhourhood of some point x 0 of X . We compute explicitely the eigenvalues of Δ α , x 0 .

How to cite

top

Colin de Verdière, Yves. "Pseudo-laplaciens. I." Annales de l'institut Fourier 32.3 (1982): 275-286. <http://eudml.org/doc/74552>.

@article{ColindeVerdière1982,
abstract = {On construit, sur une variété riemannienne $X$ de dimension $2$ ou $3$, les extensions autoadjointes $\Delta _\{\alpha ,x_0\}(\alpha \in \{\bf R\}/\pi \{\bf Z\})$ de la restriction du laplacien aux fonctions nulles au voisinage d’un point $x_0$ de $X$. On calcule explicitement les valeurs propres de $\Delta _\{\alpha ,x_0\}$.},
author = {Colin de Verdière, Yves},
journal = {Annales de l'institut Fourier},
keywords = {Riemannian manifolds of dimension 2 or 3; eigenvalues of Laplacian},
language = {fre},
number = {3},
pages = {275-286},
publisher = {Association des Annales de l'Institut Fourier},
title = {Pseudo-laplaciens. I},
url = {http://eudml.org/doc/74552},
volume = {32},
year = {1982},
}

TY - JOUR
AU - Colin de Verdière, Yves
TI - Pseudo-laplaciens. I
JO - Annales de l'institut Fourier
PY - 1982
PB - Association des Annales de l'Institut Fourier
VL - 32
IS - 3
SP - 275
EP - 286
AB - On construit, sur une variété riemannienne $X$ de dimension $2$ ou $3$, les extensions autoadjointes $\Delta _{\alpha ,x_0}(\alpha \in {\bf R}/\pi {\bf Z})$ de la restriction du laplacien aux fonctions nulles au voisinage d’un point $x_0$ de $X$. On calcule explicitement les valeurs propres de $\Delta _{\alpha ,x_0}$.
LA - fre
KW - Riemannian manifolds of dimension 2 or 3; eigenvalues of Laplacian
UR - http://eudml.org/doc/74552
ER -

References

top
  1. [1] ALBEVERIO, FENSTADT, HOEGH-KROHN, Trans. A.M.S., t. 252 (1979), 275-295. Zbl0424.35014
  2. [2] M. BERGER, P. GAUDUCHON et E. MAZET, Le spectre d'une variété riemannienne, Lecture Notes in Math., 194 (1971), Springer. Zbl0223.53034MR43 #8025
  3. [3] P. CARTIER, Analyse numérique d'un problème de valeurs propres à haute précision (application aux fonctions automorphes), Preprint I.H.E.S., (1978). Zbl0491.10018
  4. [4] P. CARTIER, D. HEJHAL, Sur les zéros de la fonction zêta de Selberg, Preprint I.H.E.S., (1979). Zbl0496.10012
  5. [5] E. CODDINGTON, N. LEVINSON, Theory of ordinary differential equations, Mc Graw-Hill, (1955). Zbl0064.33002MR16,1022b
  6. [6] Y. COLIN DE VERDIERE, Une nouvelle démonstration du prolongement méromorphe des séries d'Eisenstein, CRAS, t. 293 (1981), 361-363. Zbl0478.30035MR83a:10038
  7. [7] M. GAFFNEY, Ann. of Math., 60 (1954), 140-145. Zbl0055.40301
  8. [8] GROSSMANN, HOEGH-KROHN, MEBKHOUT, Comm. Math. Phys., 77 (1980), 87-100. 
  9. [9] H. HAAS, Numerische Berechnung..., Diplomarbeit, Heidelberg (1977). 
  10. [10] T. KUBOTA, Elementary theory of Eisenstein series, John Wiley, (1973). Zbl0268.10012MR55 #2759
  11. [11] S. LANG, SL2 (R), Addison-Wesley (1975). 
  12. [12] P. LAX, R. PHILLIPS, Scattering theory for automorphic functions, Annals of Math. Studies, 87 (1976). Zbl0362.10022MR58 #27768
  13. [13] REED, B. SIMON, Methods of modern math. physics, vol. II, Academic Press (1975). Zbl0308.47002
  14. [14] A. VENKOV, Russian Math. Surveys, 34 (1979), 79-153. Zbl0437.10012

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.