Unique continuation for Schrödinger operators in dimension three or less
Annales de l'institut Fourier (1984)
- Volume: 34, Issue: 3, page 189-200
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topSawyer, Eric T.. "Unique continuation for Schrödinger operators in dimension three or less." Annales de l'institut Fourier 34.3 (1984): 189-200. <http://eudml.org/doc/74642>.
@article{Sawyer1984,
abstract = {We show that the differential inequality $\vert \Delta u\vert \le v\vert u\vert $ has the unique continuation property relative to the Sobolev space $H^\{2,1\}_\{loc\}(\Omega )$, $\Omega \subset R^n$, $n\le 3$, if $v$ satisfies the condition\begin\{\} (K\_ n^\{\rm loc\})\ \lim \_\{r\rightarrow 0\}\sup \_\{x\in K\}\int \_\{\vert x-y\vert < r\}\vert x-y\vert ^\{2-n\}v(y)dy=0 \end\{\}for all compact $K\subset \Omega $, where if $n=2$, we replace $\vert x- y\vert ^\{2-n\}$ by $-\log \vert x-y\vert $. This resolves a conjecture of B. Simon on unique continuation for Schrödinger operators, $H=-\Delta +v$, in the case $n\le 3$. The proof uses Carleman’s approach together with the following pointwise inequality valid for all $N=0,1,2,\ldots $ and any $u\in H_c^\{2,1\}(\{\bf R\}^3-\lbrace 0\rbrace ),$\begin\{\} \{\vert u(x)\vert \over \vert x\vert ^N\}\le C\int \_\{\{\bf R\}^3\}\vert x-y\vert ^\{-1\}\{\vert \Delta u(y)\vert \over \vert y\vert ^N\}dy \text\{for\} \text\{a.e.\} x \text\{in\} \{\bf R\}^3.\end\{\}},
author = {Sawyer, Eric T.},
journal = {Annales de l'institut Fourier},
keywords = {unique continuation; Schrödinger operators; Sobolev space},
language = {eng},
number = {3},
pages = {189-200},
publisher = {Association des Annales de l'Institut Fourier},
title = {Unique continuation for Schrödinger operators in dimension three or less},
url = {http://eudml.org/doc/74642},
volume = {34},
year = {1984},
}
TY - JOUR
AU - Sawyer, Eric T.
TI - Unique continuation for Schrödinger operators in dimension three or less
JO - Annales de l'institut Fourier
PY - 1984
PB - Association des Annales de l'Institut Fourier
VL - 34
IS - 3
SP - 189
EP - 200
AB - We show that the differential inequality $\vert \Delta u\vert \le v\vert u\vert $ has the unique continuation property relative to the Sobolev space $H^{2,1}_{loc}(\Omega )$, $\Omega \subset R^n$, $n\le 3$, if $v$ satisfies the condition\begin{} (K_ n^{\rm loc})\ \lim _{r\rightarrow 0}\sup _{x\in K}\int _{\vert x-y\vert < r}\vert x-y\vert ^{2-n}v(y)dy=0 \end{}for all compact $K\subset \Omega $, where if $n=2$, we replace $\vert x- y\vert ^{2-n}$ by $-\log \vert x-y\vert $. This resolves a conjecture of B. Simon on unique continuation for Schrödinger operators, $H=-\Delta +v$, in the case $n\le 3$. The proof uses Carleman’s approach together with the following pointwise inequality valid for all $N=0,1,2,\ldots $ and any $u\in H_c^{2,1}({\bf R}^3-\lbrace 0\rbrace ),$\begin{} {\vert u(x)\vert \over \vert x\vert ^N}\le C\int _{{\bf R}^3}\vert x-y\vert ^{-1}{\vert \Delta u(y)\vert \over \vert y\vert ^N}dy \text{for} \text{a.e.} x \text{in} {\bf R}^3.\end{}
LA - eng
KW - unique continuation; Schrödinger operators; Sobolev space
UR - http://eudml.org/doc/74642
ER -
References
top- [1] W.O. AMREIN, A.M. BERTHIER and V. GEORGESCU, Lp inequalities for the Laplacian and unique continuation, Ann. Inst. Fourier, Grenoble, 31-3 (1981), 153-168. Zbl0468.35017MR83g:35011
- [2] A.M. BERTHIER, Sur le spectre ponctuel de l'opérateur de Schrödinger, C.R.A.S., Paris, 290A (1980), 393-395. Zbl0454.35070MR81a:35072
- [3] T. CARLEMAN, Sur un problème d'unicité pour les systèmes d'équations aux dérivés partielles à deux variables indépendantes, Ark. Mat., 26B (1939), 1-9. Zbl0022.34201MR1,55fJFM65.0394.03
- [4] V. GEORGESCU, On the unique continuation property for Schrödinger Hamiltonians, Helv. Phys. Acta, 52 (1979), 655-670.
- [5] E. HEINZ, Uber die Eindeutigkeit beim Cauchy'schen Anfangswertproblem einer elliptischen Differentialgleichung zweiter Ordnung, Nachr. Akad.-Wiss. Göttingen, II (1955), 1-12. Zbl0067.07503MR17,626c
- [6] L. HORMANDER, Linear Partial Differential Operators, Springer, Berlin, 1963. Zbl0108.09301MR28 #4221
- [7] R. KERMAN and E. SAWYER, Weighted norm inequalities of trace-type for potential operators, preprint. Zbl0673.47030
- [8] V.G. MAZ'YA, Imbedding theorems and their applications, Baku Sympos. (1966), “Nauka”, Moscow, (1970), 142-154 (Russian).
- [9] V.G. MAZ'YA, On some integral inequalities for functions of several variables, Problems in Math. Analysis, No 3 (1972) Leningrad U. (Russian).
- [10] M. REED and B. SIMON, Methods of Modern Mathematical Physics, IV. Analysis of Operators, Academic Press, New York, 1978. Zbl0401.47001
- [11] J. SAUT and B. SCHEURER, Un théorème de prolongement unique pour des opérators elliptiques dont les coefficients ne sont pas localement bornés, C.R.A.S., Paris, 290A (1980), 595-598. Zbl0429.35020MR82c:35020
- [12] M. SCHECHTER and B. SIMON, Unique continuation for Schrödinger operators with unbounded potentials, J. Math. Anal. Appl., 77 (1980), 482-492. Zbl0458.35024MR83b:35031
- [13] B. SIMON, Schrödinger semigroups, Bull. A.M.S., 7 (1982), 447-526. Zbl0524.35002MR86b:81001a
- [14] E.M. STEIN, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, N.J. 1970. Zbl0207.13501MR44 #7280
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.