Unique continuation for Schrödinger operators in dimension three or less

Eric T. Sawyer

Annales de l'institut Fourier (1984)

  • Volume: 34, Issue: 3, page 189-200
  • ISSN: 0373-0956

Abstract

top
We show that the differential inequality | Δ u | v | u | has the unique continuation property relative to the Sobolev space H l o c 2 , 1 ( Ω ) , Ω R n , n 3 , if v satisfies the condition ( K n loc ) lim r 0 sup x K | x - y | < r | x - y | 2 - n v ( y ) d y = 0 for all compact K Ω , where if n = 2 , we replace | x - y | 2 - n by - log | x - y | . This resolves a conjecture of B. Simon on unique continuation for Schrödinger operators, H = - Δ + v , in the case n 3 . The proof uses Carleman’s approach together with the following pointwise inequality valid for all N = 0 , 1 , 2 , ... and any u H c 2 , 1 ( R 3 - { 0 } ) , | u ( x ) | | x | N C R 3 | x - y | - 1 | Δ u ( y ) | | y | N d y for a.e. x in R 3 .

How to cite

top

Sawyer, Eric T.. "Unique continuation for Schrödinger operators in dimension three or less." Annales de l'institut Fourier 34.3 (1984): 189-200. <http://eudml.org/doc/74642>.

@article{Sawyer1984,
abstract = {We show that the differential inequality $\vert \Delta u\vert \le v\vert u\vert $ has the unique continuation property relative to the Sobolev space $H^\{2,1\}_\{loc\}(\Omega )$, $\Omega \subset R^n$, $n\le 3$, if $v$ satisfies the condition\begin\{\} (K\_ n^\{\rm loc\})\ \lim \_\{r\rightarrow 0\}\sup \_\{x\in K\}\int \_\{\vert x-y\vert &lt; r\}\vert x-y\vert ^\{2-n\}v(y)dy=0 \end\{\}for all compact $K\subset \Omega $, where if $n=2$, we replace $\vert x- y\vert ^\{2-n\}$ by $-\log \vert x-y\vert $. This resolves a conjecture of B. Simon on unique continuation for Schrödinger operators, $H=-\Delta +v$, in the case $n\le 3$. The proof uses Carleman’s approach together with the following pointwise inequality valid for all $N=0,1,2,\ldots $ and any $u\in H_c^\{2,1\}(\{\bf R\}^3-\lbrace 0\rbrace ),$\begin\{\} \{\vert u(x)\vert \over \vert x\vert ^N\}\le C\int \_\{\{\bf R\}^3\}\vert x-y\vert ^\{-1\}\{\vert \Delta u(y)\vert \over \vert y\vert ^N\}dy \text\{for\} \text\{a.e.\} x \text\{in\} \{\bf R\}^3.\end\{\}},
author = {Sawyer, Eric T.},
journal = {Annales de l'institut Fourier},
keywords = {unique continuation; Schrödinger operators; Sobolev space},
language = {eng},
number = {3},
pages = {189-200},
publisher = {Association des Annales de l'Institut Fourier},
title = {Unique continuation for Schrödinger operators in dimension three or less},
url = {http://eudml.org/doc/74642},
volume = {34},
year = {1984},
}

TY - JOUR
AU - Sawyer, Eric T.
TI - Unique continuation for Schrödinger operators in dimension three or less
JO - Annales de l'institut Fourier
PY - 1984
PB - Association des Annales de l'Institut Fourier
VL - 34
IS - 3
SP - 189
EP - 200
AB - We show that the differential inequality $\vert \Delta u\vert \le v\vert u\vert $ has the unique continuation property relative to the Sobolev space $H^{2,1}_{loc}(\Omega )$, $\Omega \subset R^n$, $n\le 3$, if $v$ satisfies the condition\begin{} (K_ n^{\rm loc})\ \lim _{r\rightarrow 0}\sup _{x\in K}\int _{\vert x-y\vert &lt; r}\vert x-y\vert ^{2-n}v(y)dy=0 \end{}for all compact $K\subset \Omega $, where if $n=2$, we replace $\vert x- y\vert ^{2-n}$ by $-\log \vert x-y\vert $. This resolves a conjecture of B. Simon on unique continuation for Schrödinger operators, $H=-\Delta +v$, in the case $n\le 3$. The proof uses Carleman’s approach together with the following pointwise inequality valid for all $N=0,1,2,\ldots $ and any $u\in H_c^{2,1}({\bf R}^3-\lbrace 0\rbrace ),$\begin{} {\vert u(x)\vert \over \vert x\vert ^N}\le C\int _{{\bf R}^3}\vert x-y\vert ^{-1}{\vert \Delta u(y)\vert \over \vert y\vert ^N}dy \text{for} \text{a.e.} x \text{in} {\bf R}^3.\end{}
LA - eng
KW - unique continuation; Schrödinger operators; Sobolev space
UR - http://eudml.org/doc/74642
ER -

References

top
  1. [1] W.O. AMREIN, A.M. BERTHIER and V. GEORGESCU, Lp inequalities for the Laplacian and unique continuation, Ann. Inst. Fourier, Grenoble, 31-3 (1981), 153-168. Zbl0468.35017MR83g:35011
  2. [2] A.M. BERTHIER, Sur le spectre ponctuel de l'opérateur de Schrödinger, C.R.A.S., Paris, 290A (1980), 393-395. Zbl0454.35070MR81a:35072
  3. [3] T. CARLEMAN, Sur un problème d'unicité pour les systèmes d'équations aux dérivés partielles à deux variables indépendantes, Ark. Mat., 26B (1939), 1-9. Zbl0022.34201MR1,55fJFM65.0394.03
  4. [4] V. GEORGESCU, On the unique continuation property for Schrödinger Hamiltonians, Helv. Phys. Acta, 52 (1979), 655-670. 
  5. [5] E. HEINZ, Uber die Eindeutigkeit beim Cauchy'schen Anfangswertproblem einer elliptischen Differentialgleichung zweiter Ordnung, Nachr. Akad.-Wiss. Göttingen, II (1955), 1-12. Zbl0067.07503MR17,626c
  6. [6] L. HORMANDER, Linear Partial Differential Operators, Springer, Berlin, 1963. Zbl0108.09301MR28 #4221
  7. [7] R. KERMAN and E. SAWYER, Weighted norm inequalities of trace-type for potential operators, preprint. Zbl0673.47030
  8. [8] V.G. MAZ'YA, Imbedding theorems and their applications, Baku Sympos. (1966), “Nauka”, Moscow, (1970), 142-154 (Russian). 
  9. [9] V.G. MAZ'YA, On some integral inequalities for functions of several variables, Problems in Math. Analysis, No 3 (1972) Leningrad U. (Russian). 
  10. [10] M. REED and B. SIMON, Methods of Modern Mathematical Physics, IV. Analysis of Operators, Academic Press, New York, 1978. Zbl0401.47001
  11. [11] J. SAUT and B. SCHEURER, Un théorème de prolongement unique pour des opérators elliptiques dont les coefficients ne sont pas localement bornés, C.R.A.S., Paris, 290A (1980), 595-598. Zbl0429.35020MR82c:35020
  12. [12] M. SCHECHTER and B. SIMON, Unique continuation for Schrödinger operators with unbounded potentials, J. Math. Anal. Appl., 77 (1980), 482-492. Zbl0458.35024MR83b:35031
  13. [13] B. SIMON, Schrödinger semigroups, Bull. A.M.S., 7 (1982), 447-526. Zbl0524.35002MR86b:81001a
  14. [14] E.M. STEIN, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, N.J. 1970. Zbl0207.13501MR44 #7280

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.