Interior Hölder estimates for solutions of Schrödinger equations and the regularity of nodal sets

M. Hoffmann-Ostenhof; T. Hoffmann-Ostenhof; N. Nadirashvili

Journées équations aux dérivées partielles (1994)

  • Volume: 1994, page 1-9
  • ISSN: 0752-0360

How to cite

top

Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T., and Nadirashvili, N.. "Interior Hölder estimates for solutions of Schrödinger equations and the regularity of nodal sets." Journées équations aux dérivées partielles 1994 (1994): 1-9. <http://eudml.org/doc/93281>.

@article{Hoffmann1994,
author = {Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T., Nadirashvili, N.},
journal = {Journées équations aux dérivées partielles},
language = {eng},
pages = {1-9},
publisher = {Ecole polytechnique},
title = {Interior Hölder estimates for solutions of Schrödinger equations and the regularity of nodal sets},
url = {http://eudml.org/doc/93281},
volume = {1994},
year = {1994},
}

TY - JOUR
AU - Hoffmann-Ostenhof, M.
AU - Hoffmann-Ostenhof, T.
AU - Nadirashvili, N.
TI - Interior Hölder estimates for solutions of Schrödinger equations and the regularity of nodal sets
JO - Journées équations aux dérivées partielles
PY - 1994
PB - Ecole polytechnique
VL - 1994
SP - 1
EP - 9
LA - eng
UR - http://eudml.org/doc/93281
ER -

References

top
  1. [A] G. Alessandrini, Singular solutions and the determination of conductivity by boundary measurements, J. Diff. Equ. 84 (1990), 252-272. Zbl0778.35109MR91e:35210
  2. [AS] M. Aizenman, B. Simon, Brownian motion and Harnack inequality for Schrödinger operators, Commun. Pure Appl. Math. 35 (1982), 209-273. Zbl0459.60069MR84a:35062
  3. [B] L. Bers, Local behaviour of solutions of general linear elliptic equations, Commun. Pure Appl. Math. 8 (1955), 473-496. Zbl0066.08101MR17,743a
  4. [CF] L. A. Caffarelli, A. Friedman, Partial regularity of the zero-set of solutions of linear and superlinear elliptic equations, J. Differential Equations 60 (1985), 420-433. Zbl0593.35047MR87e:35006
  5. [CM] S. Chanillo, B. Muckenhoupt, Nodal geometry on Riemannian manifolds, J. Diff. geometry 34 (1991), 85-71. Zbl0727.58048MR92f:58183
  6. [D] R.-T. Dong, Nodal sets of eigenfunctions on Riemann surfaces, J. Diff. Geometry 36 (1992), 493-506. Zbl0776.53024MR93h:58159
  7. [DF] H. Donelly, Ch. Fefferman, Nodal sets of eigenfunctions on Riemannian manifolds, Invent. math. 93 (1988), 161-183. Zbl0659.58047MR89m:58207
  8. [GT] D. Gilbarg, N.S. Trudinger, Elliptic partial differential equations 2nd ed., Springer, Berlin, 1983. Zbl0562.35001
  9. [HO2] M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, Local properties of solutions of Schrödinger equations, Commun. PDE 17 (1992), 491-522. Zbl0783.35054MR93d:35033
  10. [HO2N] M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, N. Nadirashvili, Regularity of the nodal sets of solutions to Schrödinger equations, Math. Results in Quantum Mechanics, Int. Conf. in Blossin, Germany, May 17-21 1993, Ed. by M. Demuth, P. Exner, H. Neidhardt, V. Zagrebnov, p.19-25, Operator Theory:Advances and Applications, Vol. 70, Birkhäuser, Basel, 1994. Zbl0817.35019
  11. [HO2N1] M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, N. Nadirashvili, Interior Hölder estimates for solutions of Schrödinger equations and the regularity of nodal sets, to be submitted (1994). Zbl0948.35501
  12. [HO2S1] M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, H. Stremnitzer, electronic wavefunctions near coalescence points, Phys. Rev. Letters 68 (1992), 3857-3860. 
  13. [HO2a] M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, On the local behaviour of nodes of solutions of Schrödinger equations in dimension ≥ 3, Commun. PDE 15 (1990), 435-451. Zbl0725.35005MR91f:35086
  14. [HS] R. Hardt, L. Simon, Nodal sets for solutions of elliptic equations, J. Diff. Geometry 30 (1989), 505-522. Zbl0692.35005MR90m:58031
  15. [K] T. Kato, Schrödinger operators with singular potentials, Is. J. Math. 13 (1973), 135-148. Zbl0246.35025MR48 #12155
  16. [Ke] C. Kenig, Restriction theorems, Carleman estimates, uniform Sobolev inequalities and their application, Lecture Notes in Mathematics 1384 (1989), 69-89. Zbl0685.35003MR90m:35016
  17. [KS] P. Kröger, K.-Th. Sturm, Hölder continuity of normalized solutions of the Schrödinger equation, (to appear) Math. Ann. (1994). Zbl0822.35033
  18. [R] L. Robbiano, Sur les zeros des solutions d'inequalités differentielles elliptiques, Commun. PDE 12 (1987), 903-919. Zbl0654.35036MR88e:35014
  19. [S] B. Simon, Schrödinger semigroups, Bull. Amer. Math. Soc. 7 (1982), 447-526. Zbl0524.35002MR86b:81001a
  20. [Sa] E. Sawyer, Unique continuation for Schrödinger operators in dimension three or less, Ann. Inst. Fourier (Grenobles) 33 (1984), 189-200. Zbl0535.35007

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.