On Riesz product measures ; mutual absolute continuity and singularity
Shelby J. Kilmer; Sadahiro Saeki
Annales de l'institut Fourier (1988)
- Volume: 38, Issue: 2, page 63-93
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topKilmer, Shelby J., and Saeki, Sadahiro. "On Riesz product measures ; mutual absolute continuity and singularity." Annales de l'institut Fourier 38.2 (1988): 63-93. <http://eudml.org/doc/74803>.
@article{Kilmer1988,
abstract = {We give some criteria for mutual absolute continuity and for singularity of Riesz product measures on locally compact abelian groups. The first section gives the definition of such a measure which is more general than the usual definition. The second section provides three sufficient conditions for one Riesz product measure to be absolutely continuous with respect to another. One of our results contains a theorem of Brown-Moran-Ritter as a special case. The final section deals with random Riesz product measures. We shall establish a certain probabilistic dichotomy for such measures.},
author = {Kilmer, Shelby J., Saeki, Sadahiro},
journal = {Annales de l'institut Fourier},
keywords = {absolute continuity; singularity; Riesz product measures; locally compact abelian groups; random Riesz product measures},
language = {eng},
number = {2},
pages = {63-93},
publisher = {Association des Annales de l'Institut Fourier},
title = {On Riesz product measures ; mutual absolute continuity and singularity},
url = {http://eudml.org/doc/74803},
volume = {38},
year = {1988},
}
TY - JOUR
AU - Kilmer, Shelby J.
AU - Saeki, Sadahiro
TI - On Riesz product measures ; mutual absolute continuity and singularity
JO - Annales de l'institut Fourier
PY - 1988
PB - Association des Annales de l'Institut Fourier
VL - 38
IS - 2
SP - 63
EP - 93
AB - We give some criteria for mutual absolute continuity and for singularity of Riesz product measures on locally compact abelian groups. The first section gives the definition of such a measure which is more general than the usual definition. The second section provides three sufficient conditions for one Riesz product measure to be absolutely continuous with respect to another. One of our results contains a theorem of Brown-Moran-Ritter as a special case. The final section deals with random Riesz product measures. We shall establish a certain probabilistic dichotomy for such measures.
LA - eng
KW - absolute continuity; singularity; Riesz product measures; locally compact abelian groups; random Riesz product measures
UR - http://eudml.org/doc/74803
ER -
References
top- [1] G. BROWN and W. MORAN, On orthogonality for Riesz products, Proc. Cambridge Philos. Soc., 76 (1974), 173-181. Zbl0282.43001MR50 #2812
- [2] C. C. GRAHAM and O. C. MCGEHEE, Essays in Commutative Harmonic Analysis, Springer-Verlag (1979), New York, Heidelberg-Berlin. Zbl0439.43001MR81d:43001
- [3] E. HEWITT and K. A. ROSS, Abstract Harmonic Analysis I, Springer-Verlag (1963), New York, Heidelberg-Berlin. Zbl0115.10603
- [4] E. HEWITT and K. A. ROSS, Abstract Harmonic Analysis II, Springer-Verlag (1970), New York, Heidelberg-Berlin. Zbl0213.40103
- [5] E. HEWITT and H. S. ZUCKERMAN, Singular measures with absolutely continuous convolution squares, Proc. Cambridge Philos. Soc., 62 (1966), 399-420 ; Corrigendum, ibid., 63 (1967), 367-368. Zbl0148.38101
- [6] S. KAKUTANI, On equivalence of infinite product measures, Ann. of Math., 49 (1948), 214-224. Zbl0030.02303MR9,340e
- [7] M. LOÈVE, Probability Theory I, 4th ed., Springer-Verlag (1977), New York, Heidelberg-Berlin. Zbl0359.60001MR58 #31324a
- [8] J. M. LÓPEZ and K. A. ROSS, Sidon Sets, Marcel Dekker (1975), New York. Zbl0351.43008MR55 #13173
- [9] J. PEYRIÈRE, Sur les produits de Riesz, C. R. Acad. Sci., Paris Ser., A-B 276 (1973), 1417-1419. Zbl0258.43002MR47 #5512
- [10] L. PIGNO and S. SAEKI, Constructions of singular measures with remarkable convolution properties, Studia Math., 69 (1980), 133-141. Zbl0477.43003MR82h:43001
- [11] G. RITTER, Unendliche Produkte unkorrelierte Funktionen auf kompakten Abelschen Gruppen, Math. Scand., 42 (1978), 251-270. Zbl0398.42013MR80a:43001
- [12] G. RITTER, On Kakutani's theorem for infinite products of not necessarily independent functions, Math. Ann., 239 (1979), 35-53. Zbl0377.28004MR80g:60042
- [13] W. RUDIN, Fourier Analysis on Groups. Interscience Tract n° 12, Wiley (1962). New York. Zbl0107.09603MR27 #2808
- [14] J. L. TAYLOR, Measure Algebras. Regional Conference Series in Math., n° 16, Providence, R. I. Amer. Math. Soc. (1972). Zbl0269.28001
- [15] A. ZYGMUND, Trigonometric Series, 2 vols. Cambridge University Press (1959). Zbl0085.05601
- [16] A. PEYRIÈRE, Étude de quelques propriétés des produits de Riesz, Ann. Inst. Fourier, Grenoble, 25-2 (1975), 127-169. Zbl0302.43003MR53 #8771
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.