Classification topologique des germes de formes logarithmiques génériques

Emmanuel Paul

Annales de l'institut Fourier (1989)

  • Volume: 39, Issue: 4, page 909-927
  • ISSN: 0373-0956

Abstract

top
We give the topological classification of codimension one holomorphic foliations singular at the origin of n , which admits a multiform first integral of the type f 1 1 , ... , f p p .

How to cite

top

Paul, Emmanuel. "Classification topologique des germes de formes logarithmiques génériques." Annales de l'institut Fourier 39.4 (1989): 909-927. <http://eudml.org/doc/74861>.

@article{Paul1989,
abstract = {On établit la classification topologique des feuilletages holomorphes de codimension 1 singuliers à l’origine de $\{\Bbb C\}^n$, admettant une intégrale première multiforme du type $f_1^\{\partial _1\},\ldots \{\},f_p^\{\partial _ p\}$.},
author = {Paul, Emmanuel},
journal = {Annales de l'institut Fourier},
keywords = {singularities; logarithmic forms},
language = {fre},
number = {4},
pages = {909-927},
publisher = {Association des Annales de l'Institut Fourier},
title = {Classification topologique des germes de formes logarithmiques génériques},
url = {http://eudml.org/doc/74861},
volume = {39},
year = {1989},
}

TY - JOUR
AU - Paul, Emmanuel
TI - Classification topologique des germes de formes logarithmiques génériques
JO - Annales de l'institut Fourier
PY - 1989
PB - Association des Annales de l'Institut Fourier
VL - 39
IS - 4
SP - 909
EP - 927
AB - On établit la classification topologique des feuilletages holomorphes de codimension 1 singuliers à l’origine de ${\Bbb C}^n$, admettant une intégrale première multiforme du type $f_1^{\partial _1},\ldots {},f_p^{\partial _ p}$.
LA - fre
KW - singularities; logarithmic forms
UR - http://eudml.org/doc/74861
ER -

References

top
  1. [1] C. CAMACHO, A. LINS NETO, The topology of integrable differentiable forms near a singularity, Publications Mathématiques de l'IHES, 55 (1982), 5-35. Zbl0505.58026MR84g:58017
  2. [2] D. CERVEAU, J. F. MATTEI, Formes intégrables holomorphes singulières, S.M.F., Astérisque, n° 97 (1982). Zbl0545.32006MR86f:58006
  3. [3] HAMM, LÊ DUNG TRANG, Un théorème de Zariski du type de Lefschetz, Ann. Sc. Ec. Norm. Sup., vol. 6 (1973), 317-366. Zbl0276.14003MR53 #5582
  4. [4] H. HIRONAKA, Introduction to the theory of infinitely near singular points, Memorias de Mathematica del Instituto Jorge Juan Madrid, 28 (1974). Zbl0366.32007MR53 #3349
  5. [5] J. F. MATTEI, R. MOUSSU, Holonomie et intégrales premières, Ann. Sc. Ec. Norm. Sup., 13 (1980), 469-523. Zbl0458.32005MR83b:58005
  6. [6] E. PAUL, Étude topologique des formes logarithmiques fermées, Invent. Math., 95 (1989), 395-420. Zbl0641.57013MR90f:32023
  7. [7] E. PAUL, thèse, Toulouse (1987). 
  8. [8] J. PLANTE, Foliations with measure preserving holonomy, Ann. of Math., 102 (1975), 327-361. Zbl0314.57018MR52 #11947
  9. [9] S. SCHWARTZMAN, Asymptotic cycles, Ann. of Math., 66 (1957), 270-284. Zbl0207.22603MR19,568i
  10. [10] A. SEIDENBERG, Reduction of singularities of the differentiable equation A dy = B dx, Amer. J. of Math., (1968), 248-269. Zbl0159.33303MR36 #3762
  11. [11] A. VAN DEN ESSEN, Reduction of singularities of the differentiable equation A dy + B dx = 0, Lectures notes in math., n° 712, 44-59, Springer-Verlag. Zbl0418.34008MR82m:34007
  12. [12] C. CAMACHO, N. H. KUIPER, J. PALIS, The topology of Holomorphic Flows with Singularity, Publications Mathématiques de l'IHES, 48 (1978), 5-38. Zbl0411.58018MR80j:58045

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.