On topological rigidity of projective foliations

A. Lins Neto; P. Sad; B. Scárdua

Bulletin de la Société Mathématique de France (1998)

  • Volume: 126, Issue: 3, page 381-406
  • ISSN: 0037-9484

How to cite

top

Lins Neto, A., Sad, P., and Scárdua, B.. "On topological rigidity of projective foliations." Bulletin de la Société Mathématique de France 126.3 (1998): 381-406. <http://eudml.org/doc/87788>.

@article{LinsNeto1998,
author = {Lins Neto, A., Sad, P., Scárdua, B.},
journal = {Bulletin de la Société Mathématique de France},
keywords = {foliation; rigidity; holonomy group; non solvable group of diffeomorphisms; lamination},
language = {eng},
number = {3},
pages = {381-406},
publisher = {Société mathématique de France},
title = {On topological rigidity of projective foliations},
url = {http://eudml.org/doc/87788},
volume = {126},
year = {1998},
}

TY - JOUR
AU - Lins Neto, A.
AU - Sad, P.
AU - Scárdua, B.
TI - On topological rigidity of projective foliations
JO - Bulletin de la Société Mathématique de France
PY - 1998
PB - Société mathématique de France
VL - 126
IS - 3
SP - 381
EP - 406
LA - eng
KW - foliation; rigidity; holonomy group; non solvable group of diffeomorphisms; lamination
UR - http://eudml.org/doc/87788
ER -

References

top
  1. [1] CAMACHO (C.), LINS NETO (A.), SAD (P.). — Foliations with algebraic limit sets, Ann. of Math., t. 136, 1992, p. 429-446. Zbl0769.57017MR93i:32035
  2. [2] CAMACHO (C.), SCÁRDUA (B.). — Liouvillian first integrals, solvable holonomy groups and Riccati foliations, Preprint, IMPA, july, 1995. 
  3. [3] CERVEAU (D.), LINS NETO (A.). — Holomorphic foliations in ℂP(2) having an invariant algebraic curve, Ann. Inst. Fourier, t. 41-4, 1991, p. 883-903. Zbl0734.34007MR93b:32050
  4. [4] CERVEAU (D.), MOUSSU (R.). — Groupes d'automorphismes de (ℂ, 0) et équations différentielles y dy + ... = 0, Bull. Soc. Math. France, t. 116, 1988, p. 459-488. Zbl0696.58011MR90m:58192
  5. [5] GOMEZ-MONT (X.), ORTIZ-BOBADILLA (L.). — Sistemas Dinamicos Holomorfos em Superficies. — Sociedad Matematica Mexicana, 1989. Zbl0855.58049
  6. [6] GOMEZ-MONT (X.). — The transverse dynamics of a holomorphic flow, Ann. of Math., t. 127, 1988, p. 49-92. Zbl0639.32013MR89d:32049
  7. [7] LINS NETO (A.). — Construction of singular holomorphic vector fields and foliations in dimension two, J. Diff. Geometry, t. 26, 1987, p. 1-31. Zbl0625.57012MR88f:32047
  8. [8] LINS NETO (A.). — Algebraic solutions of polynomial differential equations and foliations in dimension two, Lect. Notes in Math., t. 1345, p. 192-231. Zbl0677.58036MR90c:58142
  9. [9] LINS NETO (A.), SCÁRDUA (B.). — Folheações algébricas complexas. — Edições do 21 CBM, IMPA, 1997. 
  10. [10] BELLIART (M.), LIOUSSE (I.), LORAY (F.). — Sur l'existence de points fixes attractifs pour les sous-groupes de Aut(ℂ, 0). — To appear in C.R. Acad. Sci. Paris, Sér. I Math. Zbl1010.30502
  11. [11] MATTEI (J-F.), SALEM (E.). — Complete systems of topological and analytical invariants for a generic foliation of (ℂ², 0), Mathematical Research Letters, t. 4, 1997, p. 131-141. Zbl0882.32024MR98a:32044
  12. [12] NAKAI (I.). — Separatrices for non solvable dynamics on ℂ, 0, Ann. Inst. Fourier, t. 44-2, 1994, p. 569-599. Zbl0804.57022MR95j:58124
  13. [13] PAUL (E.). — Classification topologique des germes de formes logarithmiques génériques, Ann. Inst. Fourier, t. 39, 1989, p. 909-927. Zbl0678.32006MR91h:32027
  14. [14] ILYASHENKO (Y.). — Global and local aspects of the theory of complex differential equations. — Proc. of Int. Cong. of Math. Helsinki, 1978. Zbl0434.34003
  15. [15] SCÁRDUA (B.). — Transversely affine and transversely projective holomorphic foliations, Ann. Sci. École Normale Sup., t. 30, 1997, p. 169-204. Zbl0889.32031MR97k:32049
  16. [16] SCHERBAKOV (A.A.). — On the density of an orbit of a pseudogroup of conformal mappings, Trudy Se. Petrovsk, t. 10, 1984, p. 170-192, 238-239. 
  17. [17] SIU (Y.). — Techniques of extension of analytic objects. — Marcel Dekker, New York, 1974. Zbl0294.32007MR50 #13600
  18. [18] MAÑÉ (R.), SAD (P.), SULLIVAN (D.). — On the dynamics of rational maps, Ann. Sci. École Normale Sup., t. 16, 1982, p. 193-217. Zbl0524.58025MR85j:58089
  19. [19] WIRTZ (B.). — Fixed points for non solvable dynamics of (ℂ, 0). — To appear in Bulletin of the Brazilian Mathematical Society. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.