Regular trace formula and base change for
Annales de l'institut Fourier (1990)
- Volume: 40, Issue: 1, page 1-30
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topFlicker, Yuval Z.. "Regular trace formula and base change for $GL(n)$." Annales de l'institut Fourier 40.1 (1990): 1-30. <http://eudml.org/doc/74871>.
@article{Flicker1990,
abstract = {The “regular”trace formula, for a test function with a local component which is Iwahori-biinvariant and sufficiently regular with respect to the other components, is developed in the context of a reductive group. It is used to give a simple proof of the theory of base-change for cuspidal automorphic representations of $GL(n)$ which have a supercuspidal component. A purely local proof is given to transfer orbital integrals of sufficiently many spherical functions, by relating them to regular Iwahori functions. Transfer of orbital integrals of smooth functions is not used in the proof. Instead it is obtained as a corollary to the local lifting.},
author = {Flicker, Yuval Z.},
journal = {Annales de l'institut Fourier},
keywords = {Hecke algebra; Satake transform; matching solid companions; admissible representations; base-change lifting; test function; cuspidal automorphic representations; regular Iwahori functions},
language = {eng},
number = {1},
pages = {1-30},
publisher = {Association des Annales de l'Institut Fourier},
title = {Regular trace formula and base change for $GL(n)$},
url = {http://eudml.org/doc/74871},
volume = {40},
year = {1990},
}
TY - JOUR
AU - Flicker, Yuval Z.
TI - Regular trace formula and base change for $GL(n)$
JO - Annales de l'institut Fourier
PY - 1990
PB - Association des Annales de l'Institut Fourier
VL - 40
IS - 1
SP - 1
EP - 30
AB - The “regular”trace formula, for a test function with a local component which is Iwahori-biinvariant and sufficiently regular with respect to the other components, is developed in the context of a reductive group. It is used to give a simple proof of the theory of base-change for cuspidal automorphic representations of $GL(n)$ which have a supercuspidal component. A purely local proof is given to transfer orbital integrals of sufficiently many spherical functions, by relating them to regular Iwahori functions. Transfer of orbital integrals of smooth functions is not used in the proof. Instead it is obtained as a corollary to the local lifting.
LA - eng
KW - Hecke algebra; Satake transform; matching solid companions; admissible representations; base-change lifting; test function; cuspidal automorphic representations; regular Iwahori functions
UR - http://eudml.org/doc/74871
ER -
References
top- [AC] J. ARTHUR, L. CLOZEL, Simple Algebras, Base Change and the Advanced Theory of the Trace Formula, Annales of Math. Study, 120 (1989). Zbl0682.10022
- [BDK] J. BERNSTEIN, P. DELIGNE, D. KAZHDAN, Trace Paley-Wiener theorem, J. Analyse Math., 47 (1986), 180-192. Zbl0634.22011MR88g:22016
- [BDKV] J. BERNSTEIN, P. DELIGNE, D. KAZHDAN, M. F. VIGNERAS, Représentations des groupes réductifs sur un corps local, Hermann, Paris, 1984. Zbl0544.00007
- [BZ] J. BERNSTEIN, A. ZELEVINSKY, Induced representation of reductive p-adic groups I, Ann. Scient. Ecole Norm. Sup., 10 (1977), 441-472. Zbl0412.22015
- [B] A. BOREL, Admissible representations of a semi-simple group over a local field with vectors fixed under an Iwahori subgroup, Invent. Math., 35 (1976), 233-259. Zbl0334.22012MR56 #3196
- [BJ] A. BOREL, H. JACQUET, Automorphic forms and automorphic representations, Proc. Symp. Pure Math., 33 (1979), I, 189-208. Zbl0414.22020MR81m:10055
- [C] P. CARTIER, Representations of p-adic groups: A survey, Proc. Symp. Pure Math., 33 (1979), I 111-155. Zbl0421.22010MR81e:22029
- [CD] W. CASSELMAN, Characters and Jacquet modules, Math. Ann., 230 (1977), 101-105; see also: P. Deligne, Le support du caractère d'une représentation supercuspidale, CRASP, 283 (1976), 155-157. Zbl0337.22019MR58 #11237
- [D] V. DRINFELD, Elliptic modules II, Mat. Sbornik, 102 (144) (1977). (2) (= Math. USSR Sbornik, 31 (1977)(2), 159-170). Zbl0386.20022MR55 #12644
- [F1] Y. FLICKER, Rigidity for automorphic forms, J. Analyse Math., 49 (1987), 135-202. Zbl0656.10024MR89a:11057
- [F2] Y. FLICKER, Regular trace formula and base change lifting, Amer. J. Math., 110 (1988), 739-764. Zbl0666.10020MR89m:11051
- [F3] Y. FLICKER, The trace formula and base-change for GL(3), SLN 927 (1982). Zbl0481.10023MR84d:10035
- [F4] Y. FLICKER, Stable base-change for spherical functions, Nagoya Math. J., 106 (1987), 121-142. Zbl0616.22005MR89b:11098
- [F5] Y. FLICKER, On the symmetric-square : Total global comparison; preprint, Harvard, 1986.
- [F6] Y. FLICKER, Base change trace identity for U(3), J. Analyse Math., 52 (1989), 39-52. Zbl0684.10027MR90m:11080
- [FK] Y. FLICKER and D. KAZHDAN, Metaplectic correspondence, Publ. Math. IHES, 64 (1987), 53-110. Zbl0616.10024MR88d:11049
- [FK1] Y. FLICKER and D. KAZHDAN, A simple trace formula, J. Analyse Math., 50 (1988), 189-200. Zbl0666.10018MR90e:11078
- [FK2] Y. FLICKER and D. KAZHDAN, Geometric Ramanujan conjecture and Drinfeld's reciprocity law, in Number Theory, Trace Formulas and Discrete Groups, Selberg Symposium, Oslo, June (1987), Academic Press (1988), 201-218. Zbl0674.10025MR90g:11063
- [JS] H. JACQUET, J. SHALIKA, On Euler products and the classification of automorphic forms II, Amer. J. Math., 103 (1981), 777-815. Zbl0491.10020MR82m:10050b
- [K] D. KAZHDAN, Cuspidal geometry of p-adic groups, J. Analyse Math., 47 (1986), 1-36. Zbl0634.22009MR88g:22017
- [KL] D. KAZHDAN, G. LUSZTIG, Proof of the Deligne-Langlands conjecture for Hecke algebras, Invent. Math., 87 (1987), 153-215. Zbl0613.22004MR88d:11121
- [Ko] R. KOTTWITZ, Base change for unit elements of Hecke algebras, Compos. Math., 60 (1986), 237-250.
- [L] R. LANGLANDS, Base change for GL(2), Annals of Math. Study, 96 (1980). Zbl0444.22007MR82a:10032
- [R] J. ROGAWSKI, Trace-Paley-Wiener theorem in the twisted case, Trans. AMS, 309 (1988), 215-229. Zbl0663.22011MR89k:22035
- [S] J. P. SERRE, Corps locaux, Hermann, Paris, 1968.
- [Z] A. ZELEVINSKI, Induced representations of reductive p-adic groups II. On irreducible representations of GL(n), Ann. Scient. Ecole Norm. Sup., 13 (1980), 165-210. Zbl0441.22014MR83g:22012
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.