Regular trace formula and base change for G L ( n )

Yuval Z. Flicker

Annales de l'institut Fourier (1990)

  • Volume: 40, Issue: 1, page 1-30
  • ISSN: 0373-0956

Abstract

top
The “regular”trace formula, for a test function with a local component which is Iwahori-biinvariant and sufficiently regular with respect to the other components, is developed in the context of a reductive group. It is used to give a simple proof of the theory of base-change for cuspidal automorphic representations of G L ( n ) which have a supercuspidal component. A purely local proof is given to transfer orbital integrals of sufficiently many spherical functions, by relating them to regular Iwahori functions. Transfer of orbital integrals of smooth functions is not used in the proof. Instead it is obtained as a corollary to the local lifting.

How to cite

top

Flicker, Yuval Z.. "Regular trace formula and base change for $GL(n)$." Annales de l'institut Fourier 40.1 (1990): 1-30. <http://eudml.org/doc/74871>.

@article{Flicker1990,
abstract = {The “regular”trace formula, for a test function with a local component which is Iwahori-biinvariant and sufficiently regular with respect to the other components, is developed in the context of a reductive group. It is used to give a simple proof of the theory of base-change for cuspidal automorphic representations of $GL(n)$ which have a supercuspidal component. A purely local proof is given to transfer orbital integrals of sufficiently many spherical functions, by relating them to regular Iwahori functions. Transfer of orbital integrals of smooth functions is not used in the proof. Instead it is obtained as a corollary to the local lifting.},
author = {Flicker, Yuval Z.},
journal = {Annales de l'institut Fourier},
keywords = {Hecke algebra; Satake transform; matching solid companions; admissible representations; base-change lifting; test function; cuspidal automorphic representations; regular Iwahori functions},
language = {eng},
number = {1},
pages = {1-30},
publisher = {Association des Annales de l'Institut Fourier},
title = {Regular trace formula and base change for $GL(n)$},
url = {http://eudml.org/doc/74871},
volume = {40},
year = {1990},
}

TY - JOUR
AU - Flicker, Yuval Z.
TI - Regular trace formula and base change for $GL(n)$
JO - Annales de l'institut Fourier
PY - 1990
PB - Association des Annales de l'Institut Fourier
VL - 40
IS - 1
SP - 1
EP - 30
AB - The “regular”trace formula, for a test function with a local component which is Iwahori-biinvariant and sufficiently regular with respect to the other components, is developed in the context of a reductive group. It is used to give a simple proof of the theory of base-change for cuspidal automorphic representations of $GL(n)$ which have a supercuspidal component. A purely local proof is given to transfer orbital integrals of sufficiently many spherical functions, by relating them to regular Iwahori functions. Transfer of orbital integrals of smooth functions is not used in the proof. Instead it is obtained as a corollary to the local lifting.
LA - eng
KW - Hecke algebra; Satake transform; matching solid companions; admissible representations; base-change lifting; test function; cuspidal automorphic representations; regular Iwahori functions
UR - http://eudml.org/doc/74871
ER -

References

top
  1. [AC] J. ARTHUR, L. CLOZEL, Simple Algebras, Base Change and the Advanced Theory of the Trace Formula, Annales of Math. Study, 120 (1989). Zbl0682.10022
  2. [BDK] J. BERNSTEIN, P. DELIGNE, D. KAZHDAN, Trace Paley-Wiener theorem, J. Analyse Math., 47 (1986), 180-192. Zbl0634.22011MR88g:22016
  3. [BDKV] J. BERNSTEIN, P. DELIGNE, D. KAZHDAN, M. F. VIGNERAS, Représentations des groupes réductifs sur un corps local, Hermann, Paris, 1984. Zbl0544.00007
  4. [BZ] J. BERNSTEIN, A. ZELEVINSKY, Induced representation of reductive p-adic groups I, Ann. Scient. Ecole Norm. Sup., 10 (1977), 441-472. Zbl0412.22015
  5. [B] A. BOREL, Admissible representations of a semi-simple group over a local field with vectors fixed under an Iwahori subgroup, Invent. Math., 35 (1976), 233-259. Zbl0334.22012MR56 #3196
  6. [BJ] A. BOREL, H. JACQUET, Automorphic forms and automorphic representations, Proc. Symp. Pure Math., 33 (1979), I, 189-208. Zbl0414.22020MR81m:10055
  7. [C] P. CARTIER, Representations of p-adic groups: A survey, Proc. Symp. Pure Math., 33 (1979), I 111-155. Zbl0421.22010MR81e:22029
  8. [CD] W. CASSELMAN, Characters and Jacquet modules, Math. Ann., 230 (1977), 101-105; see also: P. Deligne, Le support du caractère d'une représentation supercuspidale, CRASP, 283 (1976), 155-157. Zbl0337.22019MR58 #11237
  9. [D] V. DRINFELD, Elliptic modules II, Mat. Sbornik, 102 (144) (1977). (2) (= Math. USSR Sbornik, 31 (1977)(2), 159-170). Zbl0386.20022MR55 #12644
  10. [F1] Y. FLICKER, Rigidity for automorphic forms, J. Analyse Math., 49 (1987), 135-202. Zbl0656.10024MR89a:11057
  11. [F2] Y. FLICKER, Regular trace formula and base change lifting, Amer. J. Math., 110 (1988), 739-764. Zbl0666.10020MR89m:11051
  12. [F3] Y. FLICKER, The trace formula and base-change for GL(3), SLN 927 (1982). Zbl0481.10023MR84d:10035
  13. [F4] Y. FLICKER, Stable base-change for spherical functions, Nagoya Math. J., 106 (1987), 121-142. Zbl0616.22005MR89b:11098
  14. [F5] Y. FLICKER, On the symmetric-square : Total global comparison; preprint, Harvard, 1986. 
  15. [F6] Y. FLICKER, Base change trace identity for U(3), J. Analyse Math., 52 (1989), 39-52. Zbl0684.10027MR90m:11080
  16. [FK] Y. FLICKER and D. KAZHDAN, Metaplectic correspondence, Publ. Math. IHES, 64 (1987), 53-110. Zbl0616.10024MR88d:11049
  17. [FK1] Y. FLICKER and D. KAZHDAN, A simple trace formula, J. Analyse Math., 50 (1988), 189-200. Zbl0666.10018MR90e:11078
  18. [FK2] Y. FLICKER and D. KAZHDAN, Geometric Ramanujan conjecture and Drinfeld's reciprocity law, in Number Theory, Trace Formulas and Discrete Groups, Selberg Symposium, Oslo, June (1987), Academic Press (1988), 201-218. Zbl0674.10025MR90g:11063
  19. [JS] H. JACQUET, J. SHALIKA, On Euler products and the classification of automorphic forms II, Amer. J. Math., 103 (1981), 777-815. Zbl0491.10020MR82m:10050b
  20. [K] D. KAZHDAN, Cuspidal geometry of p-adic groups, J. Analyse Math., 47 (1986), 1-36. Zbl0634.22009MR88g:22017
  21. [KL] D. KAZHDAN, G. LUSZTIG, Proof of the Deligne-Langlands conjecture for Hecke algebras, Invent. Math., 87 (1987), 153-215. Zbl0613.22004MR88d:11121
  22. [Ko] R. KOTTWITZ, Base change for unit elements of Hecke algebras, Compos. Math., 60 (1986), 237-250. 
  23. [L] R. LANGLANDS, Base change for GL(2), Annals of Math. Study, 96 (1980). Zbl0444.22007MR82a:10032
  24. [R] J. ROGAWSKI, Trace-Paley-Wiener theorem in the twisted case, Trans. AMS, 309 (1988), 215-229. Zbl0663.22011MR89k:22035
  25. [S] J. P. SERRE, Corps locaux, Hermann, Paris, 1968. 
  26. [Z] A. ZELEVINSKI, Induced representations of reductive p-adic groups II. On irreducible representations of GL(n), Ann. Scient. Ecole Norm. Sup., 13 (1980), 165-210. Zbl0441.22014MR83g:22012

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.