Stokes phenomenon, multisummability and differential Galois groups

Michèle Loday-Richaud

Annales de l'institut Fourier (1994)

  • Volume: 44, Issue: 3, page 849-906
  • ISSN: 0373-0956

Abstract

top
We precise the cohomological analysis of the Stokes phenomenon for linear differential systems due to Malgrange and Sibuya by making a rigid natural choice of a unique cocycle (called a Stokes cocyle) in every cohomological class. And we detail an algebraic algorithm to reduce any cocycle to its cohomologous Stokes form. This gives rise to an almost algebraic definition of sums for formal solutions of systems which we compare to the most usual ones. We also use this construction to the Stokes cocycle in a tannakian approach of differential Galois theory: in particular, we prove in this way, the theorem of Ramis on the generation of the differential Galois groups.

How to cite

top

Loday-Richaud, Michèle. "Stokes phenomenon, multisummability and differential Galois groups." Annales de l'institut Fourier 44.3 (1994): 849-906. <http://eudml.org/doc/75083>.

@article{Loday1994,
abstract = {We precise the cohomological analysis of the Stokes phenomenon for linear differential systems due to Malgrange and Sibuya by making a rigid natural choice of a unique cocycle (called a Stokes cocyle) in every cohomological class. And we detail an algebraic algorithm to reduce any cocycle to its cohomologous Stokes form. This gives rise to an almost algebraic definition of sums for formal solutions of systems which we compare to the most usual ones. We also use this construction to the Stokes cocycle in a tannakian approach of differential Galois theory: in particular, we prove in this way, the theorem of Ramis on the generation of the differential Galois groups.},
author = {Loday-Richaud, Michèle},
journal = {Annales de l'institut Fourier},
keywords = {Stokes phenomenon; non-abelian cohomology; Stokes cocycle; summability; multisummability; differential Galois group; Tannakian method},
language = {eng},
number = {3},
pages = {849-906},
publisher = {Association des Annales de l'Institut Fourier},
title = {Stokes phenomenon, multisummability and differential Galois groups},
url = {http://eudml.org/doc/75083},
volume = {44},
year = {1994},
}

TY - JOUR
AU - Loday-Richaud, Michèle
TI - Stokes phenomenon, multisummability and differential Galois groups
JO - Annales de l'institut Fourier
PY - 1994
PB - Association des Annales de l'Institut Fourier
VL - 44
IS - 3
SP - 849
EP - 906
AB - We precise the cohomological analysis of the Stokes phenomenon for linear differential systems due to Malgrange and Sibuya by making a rigid natural choice of a unique cocycle (called a Stokes cocyle) in every cohomological class. And we detail an algebraic algorithm to reduce any cocycle to its cohomologous Stokes form. This gives rise to an almost algebraic definition of sums for formal solutions of systems which we compare to the most usual ones. We also use this construction to the Stokes cocycle in a tannakian approach of differential Galois theory: in particular, we prove in this way, the theorem of Ramis on the generation of the differential Galois groups.
LA - eng
KW - Stokes phenomenon; non-abelian cohomology; Stokes cocycle; summability; multisummability; differential Galois group; Tannakian method
UR - http://eudml.org/doc/75083
ER -

References

top
  1. [BV89] D.G. BABBITT, V.S. VARADARAJAN, Local moduli for meromorphic differential equation, Astérisque, n° 169-170 (1989). Zbl0683.34003MR91e:32017
  2. [Ba91] W. BALSER, Summation of formal power series through iterated Laplace transform, Preprint, Universität Ulm (1991). Zbl0769.34004
  3. [BRS91] W. BALSER, B.J.L. BRAAKSMA, J.-P. RAMIS, Y. SIBUYA, Multisummability of formal power series solutions of linear ordinary differential equations, Asymptotic Analysis, 5 (1991), 27-45. Zbl0754.34057MR93f:34011
  4. [BJL79] W. BALSER, W.B. JURKAT, D.A. LUTZ, A General Theory of Invariants for Meromorphic Differential Equations; Part I, Formal Invariants - Part II, Proper Invariants, Funkcialaj Ekvacioj, 22 (1979), 197-221, 257-283. Zbl0434.34002MR83m:34003a
  5. [Br91-1] B.J.L. BRAAKSMA, Multisummability and Stokes Multipliers of Linear Meromorphic Differential Equations, Journal of Differential Equations, vol. 92, n° 1 (1991). Zbl0729.34005MR93c:34010
  6. [Br91-2] B.J.L. BRAAKSMA, Multisummability of Formal Power Series Solutions of Non-Linear Meromorphic Differential Equations, Preprint W9105 University of Groningen-Netherland (1991). Zbl0754.34057
  7. [Bre92] L. BREEN, Tannakian Categories, Prépublication 92-13, Université Paris-Nord, 93430 Villetaneuse. Zbl0810.18008
  8. [Be79] D. BERTRAND, Travaux récents sur les points singuliers des équations différentielles linéaires, Séminaire Bourbaki, 31e année, juin 1979, exposé n° 538. Zbl0445.12012
  9. [Be85] D. BERTRAND, Groupes algébriques linéaires et théorie de Galois différentielle, Cours de 3e cycle à l'Université Pierre et Marie Curie (Paris 6), 1985-1986; notes de cours rédigées par René Lardon. Zbl0857.15020
  10. [De70] P. DELIGNE, Équations différentielles à points singuliers réguliers, Lecture Notes in Mathematics n° 163, Springer-Verlag (1970). Zbl0244.14004MR54 #5232
  11. [De77] P. DELIGNE, Lettre à Malgrange (22 août 1977). 
  12. [De86] P. DELIGNE, Lettre à Varadarajan (4 janvier 1986), lettre à Ramis (7 janvier 1986), lettre à Ramis (25 et 28 février 1986). 
  13. [De90] P. DELIGNE, Catégories tannakiennes, Grothendieck Festschrift, vol. 2, Progress in Math. 87, Birkhäuser (1990), 111-195. Zbl0727.14010MR92d:14002
  14. [DeMi80] P. DELIGNE, J.S. MILNE, Tannakian categories, Lectures Notes in Mathematics n° 900, Springer-Verlag (1980). Zbl0477.14004
  15. [Ec85] J. ÉCALLE, Les fonctions résurgentes: l'équation du pont et la classification des objets locaux, vol. 3, Pub. Math. Orsay, (1985). Zbl0602.30029
  16. [Ec92] J. ÉCALLE, Calcul accélératoire et applications, à paraître dans "Actualités Mathématiques", Hermann, Paris. 
  17. [Fr56] J. FRENKEL, Cohomologie non abélienne et espaces fibrés, Thèse, 22 décembre 1956, Gauthier-Villars, série A n° 2963, numéro d'ordre 3835. 
  18. [Hu42] M. HUKUHARA, Sur les points singuliers des équations différentielles linéaires, III, Mem. Fac. Sci. Kyushu University, 2 (1942), 125-137. Zbl0061.19603MR9,92i
  19. [Ju78] W.B. JURKAT, Meromorphe Differentialgleichungen, Lecture Notes in Mathematics n° 637, Springer-Verlag (1978). Zbl0408.34004MR82a:34004
  20. [Kap73] I. KAPLANSKY, An Introduction to Differential Algebra, Hermann, Paris (1957). Zbl0083.03301MR20 #177
  21. [Kat87] N.M. KATZ, On the calculation of some differential Galois groups, Invent. Math., (1987), 13-61. Zbl0609.12025MR88c:12010
  22. [Ko73] E.R. KOLCHIN, Differential Algebra and Algebraic Groups, Academic Press, New York, (1973). Zbl0264.12102MR58 #27929
  23. [Le00] E. LEROY, Sur les séries divergentes et les fonctions définies par un développement de Taylor, Ann. Fac. Sc. Université de Toulouse, (1900), 317-430. JFM31.0256.01
  24. [LR90-1] M. LODAY-RICHAUD, Calcul des invariants de Birkhoff des systèmes d'ordre deux, Funkcialaj Ekvacioj, vol. 33, n° 2, 161-225. Zbl0719.34016MR91j:34012
  25. [LR90-2] M. LODAY-RICHAUD, Introduction à la multisommabilité, Gazette des Mathématiciens n° 44, SMF (avril 1990), 41-63. Zbl0722.34005MR91h:40007
  26. [LR91] M. LODAY-RICHAUD, Classification méromorphe locale des systèmes différentiels linéaires méromorphes: phénomène de Stokes et applications, Thèse d'État, Orsay, 22 mai 1991. 
  27. [LR92] M. LODAY-RICHAUD, Séries formelles provenant de systèmes différentiels linéaires méromorphes Journées X-UPS 91, École Polytechnique, F-91128 Palaiseau-cedex (1992), 69-99. Version étendue à paraître dans Expositiones Mathematicæ. 
  28. [Mal74] B. MALGRANGE, Sur les points singuliers des équations différentielles, L'Enseignement Mathématique, n° 20, fasc. 1-2 (1974), 147-176. Zbl0299.34011
  29. [Mal79] B. MALGRANGE, Remarques sur les équations différentielles à points singuliers irréguliers, in Lecture Notes in Mathematics, Équations différentielles et systèmes de Pfaff dans le champ complexe, édité par R. Gérard et J.-P. Ramis, n° 712, Springer-Verlag (1979), 77-86. Zbl0423.32014MR80k:14019
  30. [Mal81] B. MALGRANGE, Travaux d'Écalle et de Martinet-Ramis sur les systèmes dynamiques, Séminaire Bourbaki n° 582, nov. 1981. Zbl0526.58009
  31. [Mal83] B. MALGRANGE, La classification des connexions irrégulières à une variable, "Mathématiques et Physique", Séminaire de l'Ecole Normale Supérieure (Paris 1979-1982), 381-399; Progress in Math. vol. 37, Birkhaüser (1983). Zbl0531.58015
  32. [Mal85] B. MALGRANGE, Introduction aux travaux de J. Écalle, L'Enseignement Mathématique, t. 31 (1985), 261-282. Zbl0601.58043MR87j:32002
  33. [MalR92] B. MALGRANGE, J.-P. RAMIS, Fonctions multisommables, Ann. Inst. Fourier, Grenoble, 42, 1-2 (1992), 353-368. Zbl0759.34007MR93e:40007
  34. [MR82] J. MARTINET, J.-P. RAMIS, Problèmes de modules pour les équations différentielles non linéaires du premier ordre, Publications Mathématiques de l'IHES n° 55 (1982), 63-164. Zbl0546.58038MR84k:34011
  35. [MR89] J. MARTINET, J.-P. RAMIS, Théorie de Galois différentielle et resommation, Computer algebra and differential equations, E. Tournier ed., Academic Press, (1989). Zbl0722.12007
  36. [MR91] J. MARTINET, J.-P. RAMIS, Elementary acceleration and multisummability, Annales de l'Institut Henri Poincaré, série A, Physique théorique, 54-1 (1991), 1-71. Zbl0748.12005MR93a:32036
  37. [Mi91] C. MITSCHI, Differential Galois groups and G-functions, Differential equations and Computer algebra, M. Singer ed., Academic Press (1991). Zbl0731.12004
  38. [Ra80] J.-P. RAMIS, Les séries k-sommables et leurs applications, Complex analysis, microlocal calculus and relativistic quantum theory, Proceedings "Les Houches" 1979; D. Iagolnitzer ed., Springer Lecture Notes in Physics n° 126 (1980), 178-199. 
  39. [Ra85-1] J.-P. RAMIS, Phénomène de Stokes et resommation, CRAS Paris, t. 301 (1985), 99-102. Zbl0582.34006MR86k:12011
  40. [Ra85-2] J.-P. RAMIS, Phénomène de Stokes et filtration Gevrey sur le groupe de Picard-Vessiot, CRAS Paris, t. 301 (1985), 165-167. Zbl0593.12015MR86k:12012
  41. [Ra85-3] J.-P. RAMIS, Filtration Gevrey sur le groupe de Picard-Vessiot d'une équation différentielle irrégulière, Preprint n° 45, Instituto de Matematica Pura e Aplicada, IMPA, Rio-de-Janeiro (1985), 1-38. 
  42. [RS89] J.-P. RAMIS, Y. SIBUYA, Hukuhara's domains and fundamental existence and uniqueness theorems for asymptotic solutions of Gevrey type, Asymptotic Analysis 2 (1989), 39-94. Zbl0699.34058MR90k:58209
  43. [Si76] Y. SIBUYA, Linear differential equations in the complex domain; problems of analytic continuation, Kinokuniya, Tokyo (1976), en japonais. 
  44. [Si77] Y. SIBUYA, Stokes phenomena, Bull. Am. Math. Soc., vol. 83, n° 5 (1977), 1075-1077. Zbl0386.34008MR56 #720
  45. [Si90] Y. SIBUYA, Linear differential equations in the complex domain: problems of analytic continuation, Translations of Mathematical Monographs, vol. 82, AMS (1990). Zbl1145.34378
  46. to1857] G.G. STOKES, On the discontinuity of arbitrary constants which appear in divergent developments, Trans. of the Cambridge Phil. Soc., vol. X (1857), 106-128. 
  47. [Wa65] W. WASOW, Asymptotic expansions for ordinary differential equations, Interscience, New-York, 1965; reprint R.E. Krieger Publishing Co, inc. (1976). Zbl0133.35301

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.