On dense ideals in spaces of analytic functions
Annales de l'institut Fourier (1994)
- Volume: 44, Issue: 5, page 1355-1366
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topPutinar, Mihai. "On dense ideals in spaces of analytic functions." Annales de l'institut Fourier 44.5 (1994): 1355-1366. <http://eudml.org/doc/75101>.
@article{Putinar1994,
abstract = {One proves the density of an ideal of analytic functions into the closure of analytic functions in a $L^p(\mu )$-space, under some geometric conditions on the support of the measure $\mu $ and the zero variety of the ideal.},
author = {Putinar, Mihai},
journal = {Annales de l'institut Fourier},
keywords = {strictly pseudoconvex domain; Henkin measure; peak-set; Banach space of analytic functions},
language = {eng},
number = {5},
pages = {1355-1366},
publisher = {Association des Annales de l'Institut Fourier},
title = {On dense ideals in spaces of analytic functions},
url = {http://eudml.org/doc/75101},
volume = {44},
year = {1994},
}
TY - JOUR
AU - Putinar, Mihai
TI - On dense ideals in spaces of analytic functions
JO - Annales de l'institut Fourier
PY - 1994
PB - Association des Annales de l'Institut Fourier
VL - 44
IS - 5
SP - 1355
EP - 1366
AB - One proves the density of an ideal of analytic functions into the closure of analytic functions in a $L^p(\mu )$-space, under some geometric conditions on the support of the measure $\mu $ and the zero variety of the ideal.
LA - eng
KW - strictly pseudoconvex domain; Henkin measure; peak-set; Banach space of analytic functions
UR - http://eudml.org/doc/75101
ER -
References
top- [1] E. AMAR, Cohomologie complexe et applications, J. London Math. Soc. (2), 29 (1984), 127-140. Zbl0583.32033MR85h:32022
- [2] E. BIERSTONE and P.D. MILMAN, Ideals of holomorphic functions with C∞ boundary values on a pseudoconvex domain, Trans. Amer. Math. Soc., 304 (1987), 323-342. Zbl0631.32015MR89c:32042
- [3] J. CHAUMAT and A.-M. CHOLLET, Ensembles pics pour A∞ (D), Ann. Inst. Fourier (Grenoble), 29-3 (1979), 171-200. Zbl0398.32004MR81c:32036
- [4] J. CHAUMAT and A.-M. CHOLLET, Caractérisation et propriétés des ensembles localement pics de A∞ (D), Duke Math. J., 47 (1980), 763-787. Zbl0454.32013MR82i:32045
- [5] R.G. DOUGLAS and V. PAULSEN, Hilbert modules over function algebras, Pitman Res. Notes Math. vol. 217, Longman Sci. Techn., Harlow, 1989. Zbl0686.46035MR91g:46084
- [6] J. FRISCH, Points de platitude d'un morphisme d'espaces analytiques complexes, Invent. Math., 4 (1967), 118-138. Zbl0167.06803MR36 #5388
- [7] F.R. HARVEY and R.O. WELLS, Zero sets of nonnegative strictly plurisubharmonic functions, Math. Ann., 201 (1973), 165-170. Zbl0253.32009
- [8] G.M. HENKIN, Integral representations of functions holomorphic in strictly pseudoconvex domains and some applications, Mat. Sb., 78 (1969), 611-632 ; Math. USSR Sb., 7 (1969), 597-616. Zbl0208.35102
- [9] G.M. HENKIN and J. LEITERER, Theory of functions on complex manifolds, Birkhäuser, Basel-Boston-Berlin, 1984. Zbl0726.32001
- [10] J.J. KOHN, Global regularity for ∂ on weakly pseudoconvex manifolds, Trans. Amer. Math. Soc., 181 (1973), 273-292. Zbl0276.35071MR49 #9442
- [11] B. MALGRANGE, Ideals of differentiable functions, Oxford Univ. Press, Oxford, 1966.
- [12] A. NAGEL, On algebras of holomorphic functions with C∞-boundary values, Duke Math. J., 41 (1974), 527-535. Zbl0291.32023MR50 #2560
- [13] M. PUTINAR and N. SALINAS, Analytic transversality and Nullstellensatz in Bergman space, Contemp. Math., 137 (1992), 367-381. Zbl0784.47010MR94f:46032
- [14] W. RUDIN, Function theory in the unit ball of Cn, Springer, New York-Heidelberg-Berlin, 1980. Zbl0495.32001MR82i:32002
- [15] L. SCHWARTZ, Théorie des distributions, Hermann, Paris, 1966. Zbl0149.09501
- [16] N. SIBONY, Some aspects of weakly pseudoconvex domains, Proc. Symp. Pure Math., 52 (1991), 199-231. Zbl0747.32006MR92g:32034
- [17] Y.T. SIU, Noetherianness of rings of holomorphic functions on Stein compact sets, Proc. Amer. Math. Soc., 21 (1969), 483-489. Zbl0175.37402MR40 #404
- [18] J.C. TOUGERON, Idéaux de fonctions différentiables, Springer, Berlin et al., 1972. Zbl0251.58001MR55 #13472
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.