On dense ideals in spaces of analytic functions

Mihai Putinar

Annales de l'institut Fourier (1994)

  • Volume: 44, Issue: 5, page 1355-1366
  • ISSN: 0373-0956

Abstract

top
One proves the density of an ideal of analytic functions into the closure of analytic functions in a L p ( μ ) -space, under some geometric conditions on the support of the measure μ and the zero variety of the ideal.

How to cite

top

Putinar, Mihai. "On dense ideals in spaces of analytic functions." Annales de l'institut Fourier 44.5 (1994): 1355-1366. <http://eudml.org/doc/75101>.

@article{Putinar1994,
abstract = {One proves the density of an ideal of analytic functions into the closure of analytic functions in a $L^p(\mu )$-space, under some geometric conditions on the support of the measure $\mu $ and the zero variety of the ideal.},
author = {Putinar, Mihai},
journal = {Annales de l'institut Fourier},
keywords = {strictly pseudoconvex domain; Henkin measure; peak-set; Banach space of analytic functions},
language = {eng},
number = {5},
pages = {1355-1366},
publisher = {Association des Annales de l'Institut Fourier},
title = {On dense ideals in spaces of analytic functions},
url = {http://eudml.org/doc/75101},
volume = {44},
year = {1994},
}

TY - JOUR
AU - Putinar, Mihai
TI - On dense ideals in spaces of analytic functions
JO - Annales de l'institut Fourier
PY - 1994
PB - Association des Annales de l'Institut Fourier
VL - 44
IS - 5
SP - 1355
EP - 1366
AB - One proves the density of an ideal of analytic functions into the closure of analytic functions in a $L^p(\mu )$-space, under some geometric conditions on the support of the measure $\mu $ and the zero variety of the ideal.
LA - eng
KW - strictly pseudoconvex domain; Henkin measure; peak-set; Banach space of analytic functions
UR - http://eudml.org/doc/75101
ER -

References

top
  1. [1] E. AMAR, Cohomologie complexe et applications, J. London Math. Soc. (2), 29 (1984), 127-140. Zbl0583.32033MR85h:32022
  2. [2] E. BIERSTONE and P.D. MILMAN, Ideals of holomorphic functions with C∞ boundary values on a pseudoconvex domain, Trans. Amer. Math. Soc., 304 (1987), 323-342. Zbl0631.32015MR89c:32042
  3. [3] J. CHAUMAT and A.-M. CHOLLET, Ensembles pics pour A∞ (D), Ann. Inst. Fourier (Grenoble), 29-3 (1979), 171-200. Zbl0398.32004MR81c:32036
  4. [4] J. CHAUMAT and A.-M. CHOLLET, Caractérisation et propriétés des ensembles localement pics de A∞ (D), Duke Math. J., 47 (1980), 763-787. Zbl0454.32013MR82i:32045
  5. [5] R.G. DOUGLAS and V. PAULSEN, Hilbert modules over function algebras, Pitman Res. Notes Math. vol. 217, Longman Sci. Techn., Harlow, 1989. Zbl0686.46035MR91g:46084
  6. [6] J. FRISCH, Points de platitude d'un morphisme d'espaces analytiques complexes, Invent. Math., 4 (1967), 118-138. Zbl0167.06803MR36 #5388
  7. [7] F.R. HARVEY and R.O. WELLS, Zero sets of nonnegative strictly plurisubharmonic functions, Math. Ann., 201 (1973), 165-170. Zbl0253.32009
  8. [8] G.M. HENKIN, Integral representations of functions holomorphic in strictly pseudoconvex domains and some applications, Mat. Sb., 78 (1969), 611-632 ; Math. USSR Sb., 7 (1969), 597-616. Zbl0208.35102
  9. [9] G.M. HENKIN and J. LEITERER, Theory of functions on complex manifolds, Birkhäuser, Basel-Boston-Berlin, 1984. Zbl0726.32001
  10. [10] J.J. KOHN, Global regularity for ∂ on weakly pseudoconvex manifolds, Trans. Amer. Math. Soc., 181 (1973), 273-292. Zbl0276.35071MR49 #9442
  11. [11] B. MALGRANGE, Ideals of differentiable functions, Oxford Univ. Press, Oxford, 1966. 
  12. [12] A. NAGEL, On algebras of holomorphic functions with C∞-boundary values, Duke Math. J., 41 (1974), 527-535. Zbl0291.32023MR50 #2560
  13. [13] M. PUTINAR and N. SALINAS, Analytic transversality and Nullstellensatz in Bergman space, Contemp. Math., 137 (1992), 367-381. Zbl0784.47010MR94f:46032
  14. [14] W. RUDIN, Function theory in the unit ball of Cn, Springer, New York-Heidelberg-Berlin, 1980. Zbl0495.32001MR82i:32002
  15. [15] L. SCHWARTZ, Théorie des distributions, Hermann, Paris, 1966. Zbl0149.09501
  16. [16] N. SIBONY, Some aspects of weakly pseudoconvex domains, Proc. Symp. Pure Math., 52 (1991), 199-231. Zbl0747.32006MR92g:32034
  17. [17] Y.T. SIU, Noetherianness of rings of holomorphic functions on Stein compact sets, Proc. Amer. Math. Soc., 21 (1969), 483-489. Zbl0175.37402MR40 #404
  18. [18] J.C. TOUGERON, Idéaux de fonctions différentiables, Springer, Berlin et al., 1972. Zbl0251.58001MR55 #13472

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.