Pointwise multipliers and corona type decomposition in B M O A

J. M. Ortega; Joan Fàbrega

Annales de l'institut Fourier (1996)

  • Volume: 46, Issue: 1, page 111-137
  • ISSN: 0373-0956

Abstract

top
In this paper we obtain several characterizations of the pointwise multipliers of the space B M O A in the unit ball B of n . Moreover, if g 1 , ... , g m are holomorphic functions on B , we prove that M g ( f ) ( z ) = j = 1 m g j ( z ) f j ( z ) maps B M O A × ... × B M O A onto B M O A if and only if the functions g j are multipliers of the space B M O A and satisfy j = 1 m | g j ( z ) | δ > 0 .

How to cite

top

Ortega, J. M., and Fàbrega, Joan. "Pointwise multipliers and corona type decomposition in $BMOA$." Annales de l'institut Fourier 46.1 (1996): 111-137. <http://eudml.org/doc/75168>.

@article{Ortega1996,
abstract = {In this paper we obtain several characterizations of the pointwise multipliers of the space $BMOA$ in the unit ball $B$ of $\{\Bbb C\}^n$. Moreover, if $g_1,\ldots ,g_m$ are holomorphic functions on $B$, we prove that $M_g(f)(z)=\sum \limits _\{j=1\}^m\,g_j(z)\,f_j(z)$ maps $BMOA\times \ldots \times BMOA$ onto $BMOA$ if and only if the functions $g_j$ are multipliers of the space $BMOA$ and satisfy $\sum \limits _\{j=1\}^m\,\vert g_j(z)\vert \ge \delta &gt;0.$},
author = {Ortega, J. M., Fàbrega, Joan},
journal = {Annales de l'institut Fourier},
keywords = {; pointwise multipliers; corona problem},
language = {eng},
number = {1},
pages = {111-137},
publisher = {Association des Annales de l'Institut Fourier},
title = {Pointwise multipliers and corona type decomposition in $BMOA$},
url = {http://eudml.org/doc/75168},
volume = {46},
year = {1996},
}

TY - JOUR
AU - Ortega, J. M.
AU - Fàbrega, Joan
TI - Pointwise multipliers and corona type decomposition in $BMOA$
JO - Annales de l'institut Fourier
PY - 1996
PB - Association des Annales de l'Institut Fourier
VL - 46
IS - 1
SP - 111
EP - 137
AB - In this paper we obtain several characterizations of the pointwise multipliers of the space $BMOA$ in the unit ball $B$ of ${\Bbb C}^n$. Moreover, if $g_1,\ldots ,g_m$ are holomorphic functions on $B$, we prove that $M_g(f)(z)=\sum \limits _{j=1}^m\,g_j(z)\,f_j(z)$ maps $BMOA\times \ldots \times BMOA$ onto $BMOA$ if and only if the functions $g_j$ are multipliers of the space $BMOA$ and satisfy $\sum \limits _{j=1}^m\,\vert g_j(z)\vert \ge \delta &gt;0.$
LA - eng
KW - ; pointwise multipliers; corona problem
UR - http://eudml.org/doc/75168
ER -

References

top
  1. [A] E. AMAR, On the corona theorem., J. of Geom. Anal., 1 (1991), 291-305. Zbl0794.32007MR92h:32006
  2. [AB] E. AMAR, A. BONAMI, Mesures de Carleson d'ordre α et estimations de solutions du ∂, BSM France, 107 (1979), 23-48. Zbl0409.46035MR80h:32032
  3. [An] M. ANDERSSON, On the Hp-corona problem, Bull. Sci. Math., 118 (1994), 287-306. Zbl0810.32002MR95g:32006
  4. [AnCa1] M. ANDERSSON, H. CARLSSON, Wolff-type estimates and the Hp-corona problem in strictly pseudoconvex domains, Ark. Mat., 32 (1994), 255-276. Zbl0827.32017MR96j:32022
  5. [AnCa2] M. ANDERSSON, H. CARLSSON, Hp-estimates of holomorphic division formulas, Preprint. Zbl0857.32006
  6. [AxSh] SH. AXLER, J. SHAPIRO, Putnam's theorem, Alexander's spectral area estimate and VMO, Math. Ann., 271 (1985), 161-183. Zbl0541.30021MR87b:30053
  7. [B] B. BERNDTSSON, A formula for division and interpolation, Math. Ann., 263 (1983), 399-418. Zbl0499.32013MR85b:32005
  8. [BAn] B. BERNDTSSON, M. ANDERSSON, Henkin-Ramirez formulas with weight factors, Ann. Inst. Fourier (Grenoble), 32-3 (1983), 91-110. Zbl0466.32001MR84j:32003
  9. [BrBu] J. BRUNA, J.M. BURGUÉS, Holomorphic Approximation in Cm-Norms on Totally Real Compact Sets in ℂn, Math. Ann., 269 (1984), 103-117. Zbl0527.32010MR86c:32014
  10. [C] L. CARLESON, Interpolation by bounded analytic functions and the corona theorem, Ann. of Math., 76 (1962), 547-559. Zbl0112.29702MR25 #5186
  11. [Ch] P. CHARPENTIER, Solutions minimales de l'équation ∂u = f dans la boule et le polydisque, Ann. Inst. Fourier (Grenoble), 30-4 (1980), 121-153. Zbl0425.32009MR82j:32009
  12. [Chee] P.S. CHEE, VMOA and vanishing Carleson measures, Complex Variables Theory and Appl., 25 (1994), 311-322. Zbl0819.32005MR95m:32008
  13. [ChoaChoe] J.S. CHOA, B.R. CHOE, A Littlewwod-Paley type identity and a characterization of BMOA, Complex Variables Theory and Appl., 17 (1991), 15-23. Zbl0699.32005MR92j:32010
  14. [CoRoW] R. COIFMAN, R. ROCHBERG, G. WEISS, Factorization theorems in Hardy spaces in several variables, Ann. of Math., 103 (1976), 611-645. Zbl0326.32011MR54 #843
  15. [CoW] R. COIFMAN, G. WEISS, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc., 83 (1977), 569-645. Zbl0358.30023MR56 #6264
  16. [Cu] A. CUMENGE, Extension holomorphe dans des classes de Hardy et estimations de type mesures de Carleson pour ∂u = f, Ann. Inst. Fourier, 33-3 (1983), 59-97. Zbl0487.32011MR85j:32005
  17. [G] J.B. GARNETT, Bounded Analytic Functions, Academic Press, Orlando, Fla., 1981. Zbl0469.30024MR83g:30037
  18. [H] L. HORMANDER, An introduction to complex analysis in several variables, Van Nostram, Princeton, 1966. Zbl0138.06203MR34 #2933
  19. [J] M. JEVTIC, A note on the Carleson measure characterization of BMOA functions on the unit ball, Complex Variables Theory and Appl., 25 (1992), 189-194. Zbl0758.32003MR93a:32007
  20. [Li] S.Y. LI, Corona problem of several complex variables, Contemporary Math., 137 (1992), 307-328. Zbl0763.32008MR93m:32011
  21. [Lin] K.C. LIN, Hp solutions for the corona problem on the polidisc of ℂn, Bull. A.M.S., 110 (1986), 69-84. Zbl0601.32004MR88a:32009
  22. [MS] V.G. MAZ'DA, T.O. SHAPOSHNIKOVA, Theory of multipliers in spaces of differentiable functions, Pitmann, 1985. Zbl0645.46031
  23. [N] A. NICOLAU, The corona property for bounded analytic functions in some Besov spaces, Proc. Amer. Math. Soc., 110 (1990), 135-140. Zbl0708.46050MR90m:46090
  24. [OF] J.M. ORTEGA, J. FÀBREGA, Corona type decomposition in some Besov spaces, to appear in Math. Scand. Zbl0853.32002
  25. [R] W. RUDIN, Function theory in the unit ball of ℂn, Springer-Verlag, New York, 1980. Zbl0495.32001MR82i:32002
  26. [Sa] D. SARASON, Function theory in the unit circle, Virginia Poly. Inst. and St. Univ., Backburg, VA, 1979. Zbl0398.30027
  27. [Sh] J. SHAPIRO, Cluster sets, essential range and distance estimates in BMO, Mich. Math. J., 34 (1987), 323-335. Zbl0634.30033MR89b:30029
  28. [S] D. STEGENGA, Bounded toeplitz operators on H1 and application of the duality between H1 and the functions of Bounded Mean Oscilation, Amer. J. Math., 98 (1976), 573-589. Zbl0335.47018MR54 #8340
  29. [T] V.A. TOLOKONNIKOV, The corona theorem in algebras of bounded analytic functions, Amer. Math. Soc. Trans., 149 (1991), 61-93. Zbl0765.46041
  30. [V1] N. VAROPOULOS, BMO functions and the ∂-equation, Pacific J. Math., 71 (1977), 221-273. Zbl0371.35035MR58 #22639a
  31. [V2] N. VAROPOULOS, Zeros of Hp functions in several complex variables, Pacific J. Math., 88 (1980), 189-246. Zbl0454.32006MR82d:32004
  32. [Z] K. ZHU, Multipliers of BMO in the Bergman metric with applications to Toeplitz operators, J. Functional Anal., 87 (1989), 31-50. Zbl0705.47025MR90m:42024

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.