Multisummability for some classes of difference equations

Boele L. J. Braaksma; Bernard F. Faber

Annales de l'institut Fourier (1996)

  • Volume: 46, Issue: 1, page 183-217
  • ISSN: 0373-0956

Abstract

top
This paper concerns difference equations y ( x + 1 ) = G ( x , y ) where G takes values in C n and G is meromorphic in x in a neighborhood of in C and holomorphic in a neighborhood of 0 in C n . It is shown that under certain conditions on the linear part of G , formal power series solutions in x - 1 / p , p N , are multisummable. Moreover, it is shown that formal solutions may always be lifted to holomorphic solutions in upper and lower halfplanes, but in general these solutions are not uniquely determined by the formal solutions.

How to cite

top

Braaksma, Boele L. J., and Faber, Bernard F.. "Multisummability for some classes of difference equations." Annales de l'institut Fourier 46.1 (1996): 183-217. <http://eudml.org/doc/75170>.

@article{Braaksma1996,
abstract = {This paper concerns difference equations $y(x+1)=G(x,y)$ where $G$ takes values in $\{\bf C\}^n$ and $G$ is meromorphic in $x$ in a neighborhood of $\infty $ in $\{\bf C\}$ and holomorphic in a neighborhood of 0 in $\{\bf C\}^n$. It is shown that under certain conditions on the linear part of $G$, formal power series solutions in $x^\{-1/p\}, p\in \{\bf N\},$ are multisummable. Moreover, it is shown that formal solutions may always be lifted to holomorphic solutions in upper and lower halfplanes, but in general these solutions are not uniquely determined by the formal solutions.},
author = {Braaksma, Boele L. J., Faber, Bernard F.},
journal = {Annales de l'institut Fourier},
keywords = {multisummability; normal forms; Borel and Laplace transforms; Gevrey series; Stokes phenomenon; difference equations; formal power series solutions; holomorphic solutions},
language = {eng},
number = {1},
pages = {183-217},
publisher = {Association des Annales de l'Institut Fourier},
title = {Multisummability for some classes of difference equations},
url = {http://eudml.org/doc/75170},
volume = {46},
year = {1996},
}

TY - JOUR
AU - Braaksma, Boele L. J.
AU - Faber, Bernard F.
TI - Multisummability for some classes of difference equations
JO - Annales de l'institut Fourier
PY - 1996
PB - Association des Annales de l'Institut Fourier
VL - 46
IS - 1
SP - 183
EP - 217
AB - This paper concerns difference equations $y(x+1)=G(x,y)$ where $G$ takes values in ${\bf C}^n$ and $G$ is meromorphic in $x$ in a neighborhood of $\infty $ in ${\bf C}$ and holomorphic in a neighborhood of 0 in ${\bf C}^n$. It is shown that under certain conditions on the linear part of $G$, formal power series solutions in $x^{-1/p}, p\in {\bf N},$ are multisummable. Moreover, it is shown that formal solutions may always be lifted to holomorphic solutions in upper and lower halfplanes, but in general these solutions are not uniquely determined by the formal solutions.
LA - eng
KW - multisummability; normal forms; Borel and Laplace transforms; Gevrey series; Stokes phenomenon; difference equations; formal power series solutions; holomorphic solutions
UR - http://eudml.org/doc/75170
ER -

References

top
  1. [Bal94] W. BALSER, From Divergent Power Series to Analytic Functions, Lecture Notes in Mathematics 1582. Springer Verlag, Heidelberg, 1994. Zbl0810.34046MR96d:34071
  2. [BIS] B.L.J. BRAAKSMA, G.K. IMMINK, and Y. SIBUYA, Cauchy-Heine and Borel transforms and Stokes phenomena, in preparation. 
  3. [Bra91] B.L.J. BRAAKSMA, Multisummability and Stokes multipliers of linear meromorphic differential equations, J. Diff. Eq., 92 (1991), 45-75. Zbl0729.34005MR93c:34010
  4. [Bra92] B.L.J. BRAAKSMA, Multisummability of formal power series solutions of nonlinear meromorphic differential equations, Ann. Inst. Fourier, 42-3 (1992), 517-540. Zbl0759.34003MR93j:34006
  5. [BT93] W. BALSER and A. TOVBIS, Multisummability of iterated integrals, Asympt. Anal., 7 (1993), 121-127. Zbl0787.30026MR94g:30002
  6. [Duv83] A. DUVAL, Lemmes d'Hensel et factorisation formelle pour les opérateurs aux différences, Funkcial. Ekvac., 26 (1983), 349-368. Zbl0543.12018MR86h:12011
  7. [Eca87] J. ECALLE, L'accélération des fonctions résurgentes, manuscrit, 1987. 
  8. [Eca93] J. ECALLE, Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac, Hermann, Paris, 1993. 
  9. [GLS] R. GÉRARD, D.A. LUTZ, and R. SCHÄFKE, Analytic reduction of some nonlinear difference equations, To appear in Funkcial. Ekvac. Zbl0847.39003
  10. [Imm] G.K. IMMINK, On the summability of the formal solutions of a class of inhomogeneous linear difference equations, submitted to Funkcial. Ekvac. Zbl0872.39002
  11. [Imm84] G.K. IMMINK, Asymptotics of Analytic Difference Equations, Lecture Notes in Mathematics 1085, Springer Verlag, Heidelberg, 1984. Zbl0548.39001MR86c:39002
  12. [Imm91] G.K. IMMINK, Reduction to canonical forms and the Stokes phenomenon in the theory of linear difference equations, SIAM J. Math. Anal., 22 (1991), 238-259. Zbl0733.39004MR92c:39005
  13. [Mal] B. MALGRANGE, Sommation des séries divergentes, Prépublication de l'Inst. Fourier, no. 268, 1994. 
  14. [Mal91] B. MALGRANGE, Equations différentielles à coefficients polynomiaux, Progress in Math. 96, Birkhäuser, Basel, 1991. Zbl0764.32001MR92k:32020
  15. [MalR91] B. MALGRANGE and J.-P. RAMIS, Fonctions multisommables, Ann. Inst. Fourier, 42-1/2 (1992), 353-368. Zbl0759.34007MR93e:40007
  16. [MarR91] J. MARTINET and J.-P. RAMIS, Elementary acceleration and multisummability, Ann. Inst. H. Poincaré, Phys. Théor., 54 (1991), 331-401. Zbl0748.12005MR93a:32036
  17. [Pra83] C. PRAAGMAN, The formal classification of linear difference operators, Proc. Kon. Ned. Ac. Wet., Ser A, 86 (1983), 249-261. Zbl0519.39003MR85c:12006
  18. [Ram93] J.-P. RAMIS, Séries divergentes et théories asymptotiques, Panoramas et synthèses 121, Soc. Math. France, 1993. Zbl0830.34045MR95h:34074
  19. [vd PS] M. VAN DER PUT and M.F. SINGER, Galois theory of difference equations, Book to appear, 1996. Zbl0930.12006
  20. [Tur60] H.L. TURRITTIN, The formal theory of systems of irregular homogeneous linear difference and differential equations, Bol. Soc. Mat. Mexicana, (1960), 225-264. Zbl0100.08201MR25 #349

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.