# Multisummability for some classes of difference equations

Boele L. J. Braaksma; Bernard F. Faber

Annales de l'institut Fourier (1996)

- Volume: 46, Issue: 1, page 183-217
- ISSN: 0373-0956

## Access Full Article

top## Abstract

top## How to cite

topBraaksma, Boele L. J., and Faber, Bernard F.. "Multisummability for some classes of difference equations." Annales de l'institut Fourier 46.1 (1996): 183-217. <http://eudml.org/doc/75170>.

@article{Braaksma1996,

abstract = {This paper concerns difference equations $y(x+1)=G(x,y)$ where $G$ takes values in $\{\bf C\}^n$ and $G$ is meromorphic in $x$ in a neighborhood of $\infty $ in $\{\bf C\}$ and holomorphic in a neighborhood of 0 in $\{\bf C\}^n$. It is shown that under certain conditions on the linear part of $G$, formal power series solutions in $x^\{-1/p\}, p\in \{\bf N\},$ are multisummable. Moreover, it is shown that formal solutions may always be lifted to holomorphic solutions in upper and lower halfplanes, but in general these solutions are not uniquely determined by the formal solutions.},

author = {Braaksma, Boele L. J., Faber, Bernard F.},

journal = {Annales de l'institut Fourier},

keywords = {multisummability; normal forms; Borel and Laplace transforms; Gevrey series; Stokes phenomenon; difference equations; formal power series solutions; holomorphic solutions},

language = {eng},

number = {1},

pages = {183-217},

publisher = {Association des Annales de l'Institut Fourier},

title = {Multisummability for some classes of difference equations},

url = {http://eudml.org/doc/75170},

volume = {46},

year = {1996},

}

TY - JOUR

AU - Braaksma, Boele L. J.

AU - Faber, Bernard F.

TI - Multisummability for some classes of difference equations

JO - Annales de l'institut Fourier

PY - 1996

PB - Association des Annales de l'Institut Fourier

VL - 46

IS - 1

SP - 183

EP - 217

AB - This paper concerns difference equations $y(x+1)=G(x,y)$ where $G$ takes values in ${\bf C}^n$ and $G$ is meromorphic in $x$ in a neighborhood of $\infty $ in ${\bf C}$ and holomorphic in a neighborhood of 0 in ${\bf C}^n$. It is shown that under certain conditions on the linear part of $G$, formal power series solutions in $x^{-1/p}, p\in {\bf N},$ are multisummable. Moreover, it is shown that formal solutions may always be lifted to holomorphic solutions in upper and lower halfplanes, but in general these solutions are not uniquely determined by the formal solutions.

LA - eng

KW - multisummability; normal forms; Borel and Laplace transforms; Gevrey series; Stokes phenomenon; difference equations; formal power series solutions; holomorphic solutions

UR - http://eudml.org/doc/75170

ER -

## References

top- [Bal94] W. BALSER, From Divergent Power Series to Analytic Functions, Lecture Notes in Mathematics 1582. Springer Verlag, Heidelberg, 1994. Zbl0810.34046MR96d:34071
- [BIS] B.L.J. BRAAKSMA, G.K. IMMINK, and Y. SIBUYA, Cauchy-Heine and Borel transforms and Stokes phenomena, in preparation.
- [Bra91] B.L.J. BRAAKSMA, Multisummability and Stokes multipliers of linear meromorphic differential equations, J. Diff. Eq., 92 (1991), 45-75. Zbl0729.34005MR93c:34010
- [Bra92] B.L.J. BRAAKSMA, Multisummability of formal power series solutions of nonlinear meromorphic differential equations, Ann. Inst. Fourier, 42-3 (1992), 517-540. Zbl0759.34003MR93j:34006
- [BT93] W. BALSER and A. TOVBIS, Multisummability of iterated integrals, Asympt. Anal., 7 (1993), 121-127. Zbl0787.30026MR94g:30002
- [Duv83] A. DUVAL, Lemmes d'Hensel et factorisation formelle pour les opérateurs aux différences, Funkcial. Ekvac., 26 (1983), 349-368. Zbl0543.12018MR86h:12011
- [Eca87] J. ECALLE, L'accélération des fonctions résurgentes, manuscrit, 1987.
- [Eca93] J. ECALLE, Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac, Hermann, Paris, 1993.
- [GLS] R. GÉRARD, D.A. LUTZ, and R. SCHÄFKE, Analytic reduction of some nonlinear difference equations, To appear in Funkcial. Ekvac. Zbl0847.39003
- [Imm] G.K. IMMINK, On the summability of the formal solutions of a class of inhomogeneous linear difference equations, submitted to Funkcial. Ekvac. Zbl0872.39002
- [Imm84] G.K. IMMINK, Asymptotics of Analytic Difference Equations, Lecture Notes in Mathematics 1085, Springer Verlag, Heidelberg, 1984. Zbl0548.39001MR86c:39002
- [Imm91] G.K. IMMINK, Reduction to canonical forms and the Stokes phenomenon in the theory of linear difference equations, SIAM J. Math. Anal., 22 (1991), 238-259. Zbl0733.39004MR92c:39005
- [Mal] B. MALGRANGE, Sommation des séries divergentes, Prépublication de l'Inst. Fourier, no. 268, 1994.
- [Mal91] B. MALGRANGE, Equations différentielles à coefficients polynomiaux, Progress in Math. 96, Birkhäuser, Basel, 1991. Zbl0764.32001MR92k:32020
- [MalR91] B. MALGRANGE and J.-P. RAMIS, Fonctions multisommables, Ann. Inst. Fourier, 42-1/2 (1992), 353-368. Zbl0759.34007MR93e:40007
- [MarR91] J. MARTINET and J.-P. RAMIS, Elementary acceleration and multisummability, Ann. Inst. H. Poincaré, Phys. Théor., 54 (1991), 331-401. Zbl0748.12005MR93a:32036
- [Pra83] C. PRAAGMAN, The formal classification of linear difference operators, Proc. Kon. Ned. Ac. Wet., Ser A, 86 (1983), 249-261. Zbl0519.39003MR85c:12006
- [Ram93] J.-P. RAMIS, Séries divergentes et théories asymptotiques, Panoramas et synthèses 121, Soc. Math. France, 1993. Zbl0830.34045MR95h:34074
- [vd PS] M. VAN DER PUT and M.F. SINGER, Galois theory of difference equations, Book to appear, 1996. Zbl0930.12006
- [Tur60] H.L. TURRITTIN, The formal theory of systems of irregular homogeneous linear difference and differential equations, Bol. Soc. Mat. Mexicana, (1960), 225-264. Zbl0100.08201MR25 #349

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.