On the Haagerup inequality and groups acting on A ˜ n -buildings

Alain Valette

Annales de l'institut Fourier (1997)

  • Volume: 47, Issue: 4, page 1195-1208
  • ISSN: 0373-0956

Abstract

top
Let Γ be a group endowed with a length function L , and let E be a linear subspace of C Γ . We say that E satisfies the Haagerup inequality if there exists constants C , s > 0 such that, for any f E , the convolutor norm of f on 2 ( Γ ) is dominated by C times the 2 norm of f ( 1 + L ) s . We show that, for E = C Γ , the Haagerup inequality can be expressed in terms of decay of random walks associated with finitely supported symmetric probability measures on Γ . If L is a word length function on a finitely generated group Γ , we show that, if the space Rad L ( Γ ) of radial functions with respect to L satisfies the Haagerup inequality, then Γ is non-amenable if and only if Γ has superpolynomial growth. We also show that the Haagerup inequality for Rad L ( Γ ) has a purely combinatorial interpretation; thus, using the main result of the companion paper by J. Swiatkowski, we deduce that, for a group Γ acting simply transitively on the vertices of a thick euclidean building of type A ˜ n , the space Rad L ( Γ ) satisfies the Haagerup inequality, and Γ is non-amenable.

How to cite

top

Valette, Alain. "On the Haagerup inequality and groups acting on $\tilde{A}_n$-buildings." Annales de l'institut Fourier 47.4 (1997): 1195-1208. <http://eudml.org/doc/75259>.

@article{Valette1997,
abstract = {Let $\Gamma $ be a group endowed with a length function $L$, and let $E$ be a linear subspace of $\{\bf C\}\Gamma $. We say that $E$ satisfies the Haagerup inequality if there exists constants $C,s&gt;0$ such that, for any $f\in E$, the convolutor norm of $f$ on $\ell ^\{2\}(\Gamma )$ is dominated by $C$ times the $\ell ^\{2\}$ norm of $f(1+L)^\{s\}$. We show that, for $E=\{\bf C\}\Gamma $, the Haagerup inequality can be expressed in terms of decay of random walks associated with finitely supported symmetric probability measures on $\Gamma $. If $L$ is a word length function on a finitely generated group $\Gamma $, we show that, if the space $\{\rm Rad\}_\{L\}(\Gamma )$ of radial functions with respect to $L$ satisfies the Haagerup inequality, then $\Gamma $ is non-amenable if and only if $\Gamma $ has superpolynomial growth. We also show that the Haagerup inequality for $\{\rm Rad\}_\{L\}(\Gamma )$ has a purely combinatorial interpretation; thus, using the main result of the companion paper by J. Swiatkowski, we deduce that, for a group $\Gamma $ acting simply transitively on the vertices of a thick euclidean building of type $\tilde\{A\}_\{n\}$, the space $\{\rm Rad\}_\{L\}(\Gamma )$ satisfies the Haagerup inequality, and $\Gamma $ is non-amenable.},
author = {Valette, Alain},
journal = {Annales de l'institut Fourier},
keywords = {convolutor norm; random walks; amenability; growth of groups; euclidean buildings},
language = {eng},
number = {4},
pages = {1195-1208},
publisher = {Association des Annales de l'Institut Fourier},
title = {On the Haagerup inequality and groups acting on $\tilde\{A\}_n$-buildings},
url = {http://eudml.org/doc/75259},
volume = {47},
year = {1997},
}

TY - JOUR
AU - Valette, Alain
TI - On the Haagerup inequality and groups acting on $\tilde{A}_n$-buildings
JO - Annales de l'institut Fourier
PY - 1997
PB - Association des Annales de l'Institut Fourier
VL - 47
IS - 4
SP - 1195
EP - 1208
AB - Let $\Gamma $ be a group endowed with a length function $L$, and let $E$ be a linear subspace of ${\bf C}\Gamma $. We say that $E$ satisfies the Haagerup inequality if there exists constants $C,s&gt;0$ such that, for any $f\in E$, the convolutor norm of $f$ on $\ell ^{2}(\Gamma )$ is dominated by $C$ times the $\ell ^{2}$ norm of $f(1+L)^{s}$. We show that, for $E={\bf C}\Gamma $, the Haagerup inequality can be expressed in terms of decay of random walks associated with finitely supported symmetric probability measures on $\Gamma $. If $L$ is a word length function on a finitely generated group $\Gamma $, we show that, if the space ${\rm Rad}_{L}(\Gamma )$ of radial functions with respect to $L$ satisfies the Haagerup inequality, then $\Gamma $ is non-amenable if and only if $\Gamma $ has superpolynomial growth. We also show that the Haagerup inequality for ${\rm Rad}_{L}(\Gamma )$ has a purely combinatorial interpretation; thus, using the main result of the companion paper by J. Swiatkowski, we deduce that, for a group $\Gamma $ acting simply transitively on the vertices of a thick euclidean building of type $\tilde{A}_{n}$, the space ${\rm Rad}_{L}(\Gamma )$ satisfies the Haagerup inequality, and $\Gamma $ is non-amenable.
LA - eng
KW - convolutor norm; random walks; amenability; growth of groups; euclidean buildings
UR - http://eudml.org/doc/75259
ER -

References

top
  1. [AO76] C.A AKEMANN and P.A. OSTRAND, Computing norms in group C*-algebras, Amer. J. Math., 98 (1976), 1015-1047. Zbl0342.22008MR56 #1079
  2. [BB] W. BALLMANN and M. BRIN, Orbihedra of nonpositive curvature, to appear in Invent. Math. Zbl0866.53029
  3. [BH78] A. BOREL and G. HARDER, Existence of discrete co-compact subgroups of reductive groups over local fields, J. für reine und angew. Math., 298 (1978), 53-64. Zbl0385.14014MR80b:22022
  4. [CMSZ93] D. CARTWRIGHT, A. MANTERO, T. STEGER and A. ZAPPA, Groups acting simply transitively on the vertices of a building of type Ã2, Geometriae Dedicata, 47 (1993), 143-166. Zbl0784.51011MR95b:20053
  5. [CoS93] D. CARTWRIGHT, W. MIOTKOWSKI and T. STEGER, Property (T) and Ã2 groups, Ann. Inst. Fourier, Grenoble, 44-1 (1993), 213-248. Zbl0792.43002
  6. [CS] D. CARTWRIGHT, T. STEGER, A family of Ãn groups, preprint. Zbl0923.51010
  7. [CM90] A. CONNES and H. MOSCOVICI, Cyclic cohomology, the Novikov conjecture and hyperbolic groups, Topology, 29 (1990), 345-388. Zbl0759.58047
  8. [FFR95] S.C. FERRY, A. RANICKI and J. ROSENBERG (eds.), Novikov conjectures, index theorems and rigidity, London Math. Soc. Lect. Note Ser. 226, Cambridge U.P., 1995. Zbl0954.57018
  9. [GW71] D. GROMOLL and J.A. WOLF, Some relations between the metric structure and the algebraic structure of the fundamental group in manifolds of nonpositive curvature, Bull. Amer. Math. Soc., 77 (1971), 545-552. Zbl0237.53037MR43 #6841
  10. [Haa79] U. HAAGERUP, An example of a non-nuclear C*-algebra which has the metric approximation property, Invent. Math., 50 (1979), 279-293. Zbl0408.46046MR80j:46094
  11. [dlH88] P. de la HARPE, Groupes hyperboliques, algèbres d'opérateurs, et un théorème de Jolissaint, C.R. Acad. Sci. Paris, Sér I, 307 (1988), 771-774. Zbl0653.46059
  12. [dlHRV93] P. de la HARPE, A.G. ROBERTSON and A. VALETTE, On the spectrum of the sum of generators of a finitely generated group, II, Colloquium Math., 65 (1993), 87-102. Zbl0846.46036MR94j:22008
  13. [dlHV89] P. de la HARPE and A. VALETTE, La propriété (T) de Kazhdan pour les groupes localement compacts, Astérisque 175, Soc. Math. France, 1989. 
  14. [Jol90] P. JOLISSAINT, Rapidly decreasing functions in reduced C*-algebras of groups, Trans. amer. Math. Soc., 317 (1990), 167-196. Zbl0711.46054MR90d:22006
  15. [Jol89] P. JOLISSAINT, K-theory of reduced C*-algebras and rapidly decreasing functions on groups, K-theory, 2 (1989), 723-735. Zbl0692.46062MR90j:22004
  16. [Jol96] P. JOLISSAINT, An upper bound for the norms of powers of normalised adjacency operators, Pacific J. Math., 175, 432-436, 1996, Appendix to On spectra of simple random walks on one-relator groups, by P-A. Cherix and A. Valette. Zbl0865.60059
  17. [JV91] P. JOLISSAINT and A. VALETTE, Normes de Sobolev et convoluteurs bornés sur L2(G), Ann. Inst. Fourier, Grenoble, 41-4 (1991), 797-822. Zbl0734.43002
  18. [Kes59] H. KESTEN, Symmetric random walks on groups, Trans. Amer. Math. Soc., 92 (1959), 336-354. Zbl0092.33503MR22 #253
  19. [Pan] P. PANSU, Formule de Matsushima, de Garland, et propriété (T) pour des groupes agissant sur des espaces symétriques ou des immeubles, Preprint Orsay, 1995. 
  20. [Pit] C. PITTET, Ends and isoperimetry, Preprint Neuchâtel, 1995. 
  21. [RRS] J. RAMAGGE, G. ROBERTSON and T. STEGER, A Haagerup inequality for Ã1 X Ã1 and Ã2 groups, Preprint, 1996. Zbl0906.43009
  22. [Ron89] M. RONAN, Lectures on buildings, Academic Press, 1989. Zbl0694.51001MR90j:20001
  23. [Swi] J. SWIATKOWSKI, On the loop inequality for euclidean buildings, Ann. Inst. Fourier, Grenoble, 47-4 (1997), 1175-1194. Zbl0886.51004MR2000a:57058
  24. [Tit72] J. TITS, Free subgroups in linear groups, J. Algebra, 20 (1972), 250-270. Zbl0236.20032MR44 #4105
  25. [Tit86] J. TITS, Immeubles de type affine, in Buildings and the geometry of diagrams (L.A. Rosati, ed.), Lect. Notes in Math. 1181 (1986), Springer, 159-190. Zbl0611.20026MR87h:20077
  26. [VSCC92] N. VAROPOULOS, L. SALOFF-COSTE and T. COULHON, Analysis and geometry on groups, Cambridge U.P., 1992. Zbl0813.22003MR95f:43008
  27. [Zuk96] A. ZUK, La propriété (T) de Kazhdan pour les groupes agissant sur les polyèdres, C.R. Acad. Sci. Paris, 323 (1996), 453-458. Zbl0858.22007MR97i:22001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.