On the Haagerup inequality and groups acting on -buildings
Annales de l'institut Fourier (1997)
- Volume: 47, Issue: 4, page 1195-1208
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topValette, Alain. "On the Haagerup inequality and groups acting on $\tilde{A}_n$-buildings." Annales de l'institut Fourier 47.4 (1997): 1195-1208. <http://eudml.org/doc/75259>.
@article{Valette1997,
abstract = {Let $\Gamma $ be a group endowed with a length function $L$, and let $E$ be a linear subspace of $\{\bf C\}\Gamma $. We say that $E$ satisfies the Haagerup inequality if there exists constants $C,s>0$ such that, for any $f\in E$, the convolutor norm of $f$ on $\ell ^\{2\}(\Gamma )$ is dominated by $C$ times the $\ell ^\{2\}$ norm of $f(1+L)^\{s\}$. We show that, for $E=\{\bf C\}\Gamma $, the Haagerup inequality can be expressed in terms of decay of random walks associated with finitely supported symmetric probability measures on $\Gamma $. If $L$ is a word length function on a finitely generated group $\Gamma $, we show that, if the space $\{\rm Rad\}_\{L\}(\Gamma )$ of radial functions with respect to $L$ satisfies the Haagerup inequality, then $\Gamma $ is non-amenable if and only if $\Gamma $ has superpolynomial growth. We also show that the Haagerup inequality for $\{\rm Rad\}_\{L\}(\Gamma )$ has a purely combinatorial interpretation; thus, using the main result of the companion paper by J. Swiatkowski, we deduce that, for a group $\Gamma $ acting simply transitively on the vertices of a thick euclidean building of type $\tilde\{A\}_\{n\}$, the space $\{\rm Rad\}_\{L\}(\Gamma )$ satisfies the Haagerup inequality, and $\Gamma $ is non-amenable.},
author = {Valette, Alain},
journal = {Annales de l'institut Fourier},
keywords = {convolutor norm; random walks; amenability; growth of groups; euclidean buildings},
language = {eng},
number = {4},
pages = {1195-1208},
publisher = {Association des Annales de l'Institut Fourier},
title = {On the Haagerup inequality and groups acting on $\tilde\{A\}_n$-buildings},
url = {http://eudml.org/doc/75259},
volume = {47},
year = {1997},
}
TY - JOUR
AU - Valette, Alain
TI - On the Haagerup inequality and groups acting on $\tilde{A}_n$-buildings
JO - Annales de l'institut Fourier
PY - 1997
PB - Association des Annales de l'Institut Fourier
VL - 47
IS - 4
SP - 1195
EP - 1208
AB - Let $\Gamma $ be a group endowed with a length function $L$, and let $E$ be a linear subspace of ${\bf C}\Gamma $. We say that $E$ satisfies the Haagerup inequality if there exists constants $C,s>0$ such that, for any $f\in E$, the convolutor norm of $f$ on $\ell ^{2}(\Gamma )$ is dominated by $C$ times the $\ell ^{2}$ norm of $f(1+L)^{s}$. We show that, for $E={\bf C}\Gamma $, the Haagerup inequality can be expressed in terms of decay of random walks associated with finitely supported symmetric probability measures on $\Gamma $. If $L$ is a word length function on a finitely generated group $\Gamma $, we show that, if the space ${\rm Rad}_{L}(\Gamma )$ of radial functions with respect to $L$ satisfies the Haagerup inequality, then $\Gamma $ is non-amenable if and only if $\Gamma $ has superpolynomial growth. We also show that the Haagerup inequality for ${\rm Rad}_{L}(\Gamma )$ has a purely combinatorial interpretation; thus, using the main result of the companion paper by J. Swiatkowski, we deduce that, for a group $\Gamma $ acting simply transitively on the vertices of a thick euclidean building of type $\tilde{A}_{n}$, the space ${\rm Rad}_{L}(\Gamma )$ satisfies the Haagerup inequality, and $\Gamma $ is non-amenable.
LA - eng
KW - convolutor norm; random walks; amenability; growth of groups; euclidean buildings
UR - http://eudml.org/doc/75259
ER -
References
top- [AO76] C.A AKEMANN and P.A. OSTRAND, Computing norms in group C*-algebras, Amer. J. Math., 98 (1976), 1015-1047. Zbl0342.22008MR56 #1079
- [BB] W. BALLMANN and M. BRIN, Orbihedra of nonpositive curvature, to appear in Invent. Math. Zbl0866.53029
- [BH78] A. BOREL and G. HARDER, Existence of discrete co-compact subgroups of reductive groups over local fields, J. für reine und angew. Math., 298 (1978), 53-64. Zbl0385.14014MR80b:22022
- [CMSZ93] D. CARTWRIGHT, A. MANTERO, T. STEGER and A. ZAPPA, Groups acting simply transitively on the vertices of a building of type Ã2, Geometriae Dedicata, 47 (1993), 143-166. Zbl0784.51011MR95b:20053
- [CoS93] D. CARTWRIGHT, W. MIOTKOWSKI and T. STEGER, Property (T) and Ã2 groups, Ann. Inst. Fourier, Grenoble, 44-1 (1993), 213-248. Zbl0792.43002
- [CS] D. CARTWRIGHT, T. STEGER, A family of Ãn groups, preprint. Zbl0923.51010
- [CM90] A. CONNES and H. MOSCOVICI, Cyclic cohomology, the Novikov conjecture and hyperbolic groups, Topology, 29 (1990), 345-388. Zbl0759.58047
- [FFR95] S.C. FERRY, A. RANICKI and J. ROSENBERG (eds.), Novikov conjectures, index theorems and rigidity, London Math. Soc. Lect. Note Ser. 226, Cambridge U.P., 1995. Zbl0954.57018
- [GW71] D. GROMOLL and J.A. WOLF, Some relations between the metric structure and the algebraic structure of the fundamental group in manifolds of nonpositive curvature, Bull. Amer. Math. Soc., 77 (1971), 545-552. Zbl0237.53037MR43 #6841
- [Haa79] U. HAAGERUP, An example of a non-nuclear C*-algebra which has the metric approximation property, Invent. Math., 50 (1979), 279-293. Zbl0408.46046MR80j:46094
- [dlH88] P. de la HARPE, Groupes hyperboliques, algèbres d'opérateurs, et un théorème de Jolissaint, C.R. Acad. Sci. Paris, Sér I, 307 (1988), 771-774. Zbl0653.46059
- [dlHRV93] P. de la HARPE, A.G. ROBERTSON and A. VALETTE, On the spectrum of the sum of generators of a finitely generated group, II, Colloquium Math., 65 (1993), 87-102. Zbl0846.46036MR94j:22008
- [dlHV89] P. de la HARPE and A. VALETTE, La propriété (T) de Kazhdan pour les groupes localement compacts, Astérisque 175, Soc. Math. France, 1989.
- [Jol90] P. JOLISSAINT, Rapidly decreasing functions in reduced C*-algebras of groups, Trans. amer. Math. Soc., 317 (1990), 167-196. Zbl0711.46054MR90d:22006
- [Jol89] P. JOLISSAINT, K-theory of reduced C*-algebras and rapidly decreasing functions on groups, K-theory, 2 (1989), 723-735. Zbl0692.46062MR90j:22004
- [Jol96] P. JOLISSAINT, An upper bound for the norms of powers of normalised adjacency operators, Pacific J. Math., 175, 432-436, 1996, Appendix to On spectra of simple random walks on one-relator groups, by P-A. Cherix and A. Valette. Zbl0865.60059
- [JV91] P. JOLISSAINT and A. VALETTE, Normes de Sobolev et convoluteurs bornés sur L2(G), Ann. Inst. Fourier, Grenoble, 41-4 (1991), 797-822. Zbl0734.43002
- [Kes59] H. KESTEN, Symmetric random walks on groups, Trans. Amer. Math. Soc., 92 (1959), 336-354. Zbl0092.33503MR22 #253
- [Pan] P. PANSU, Formule de Matsushima, de Garland, et propriété (T) pour des groupes agissant sur des espaces symétriques ou des immeubles, Preprint Orsay, 1995.
- [Pit] C. PITTET, Ends and isoperimetry, Preprint Neuchâtel, 1995.
- [RRS] J. RAMAGGE, G. ROBERTSON and T. STEGER, A Haagerup inequality for Ã1 X Ã1 and Ã2 groups, Preprint, 1996. Zbl0906.43009
- [Ron89] M. RONAN, Lectures on buildings, Academic Press, 1989. Zbl0694.51001MR90j:20001
- [Swi] J. SWIATKOWSKI, On the loop inequality for euclidean buildings, Ann. Inst. Fourier, Grenoble, 47-4 (1997), 1175-1194. Zbl0886.51004MR2000a:57058
- [Tit72] J. TITS, Free subgroups in linear groups, J. Algebra, 20 (1972), 250-270. Zbl0236.20032MR44 #4105
- [Tit86] J. TITS, Immeubles de type affine, in Buildings and the geometry of diagrams (L.A. Rosati, ed.), Lect. Notes in Math. 1181 (1986), Springer, 159-190. Zbl0611.20026MR87h:20077
- [VSCC92] N. VAROPOULOS, L. SALOFF-COSTE and T. COULHON, Analysis and geometry on groups, Cambridge U.P., 1992. Zbl0813.22003MR95f:43008
- [Zuk96] A. ZUK, La propriété (T) de Kazhdan pour les groupes agissant sur les polyèdres, C.R. Acad. Sci. Paris, 323 (1996), 453-458. Zbl0858.22007MR97i:22001
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.