Non oscillating solutions of analytic gradient vector fields

Fernando Sanz

Annales de l'institut Fourier (1998)

  • Volume: 48, Issue: 4, page 1045-1067
  • ISSN: 0373-0956

Abstract

top
Let γ be an integral solution of an analytic real vector field ξ defined in a neighbordhood of 0 3 . Suppose that γ has a single limit point, ω ( γ ) = { 0 } . We say that γ is non oscillating if, for any analytic surface H , either γ is contained in H or γ cuts H only finitely many times. In this paper we give a sufficient condition for γ to be non oscillating. It is established in terms of the existence of “generalized iterated tangents”, i.e. the existence of a single limit point for any transform property for the solutions of a gradient vector field ξ = g f of an analytic function f of order 2 at 0 3 , where g is an analytic riemannian metric.

How to cite

top

Sanz, Fernando. "Non oscillating solutions of analytic gradient vector fields." Annales de l'institut Fourier 48.4 (1998): 1045-1067. <http://eudml.org/doc/75308>.

@article{Sanz1998,
abstract = {Let $\gamma $ be an integral solution of an analytic real vector field $\xi $ defined in a neighbordhood of $0\in \{\Bbb R\}^3$. Suppose that $\gamma $ has a single limit point, $\omega (\gamma )=\lbrace 0\rbrace $. We say that $\gamma $ is non oscillating if, for any analytic surface $H$, either $\gamma $ is contained in $H$ or $\gamma $ cuts $H$ only finitely many times. In this paper we give a sufficient condition for $\gamma $ to be non oscillating. It is established in terms of the existence of “generalized iterated tangents”, i.e. the existence of a single limit point for any transform property for the solutions of a gradient vector field $\xi =\nabla _g f$ of an analytic function $f$ of order 2 at $0\in \{\Bbb R\}^3$, where $g$ is an analytic riemannian metric.},
author = {Sanz, Fernando},
journal = {Annales de l'institut Fourier},
keywords = {vector field; gradient; tangent; oscillation; blowing-up; desingularization; center manifold},
language = {eng},
number = {4},
pages = {1045-1067},
publisher = {Association des Annales de l'Institut Fourier},
title = {Non oscillating solutions of analytic gradient vector fields},
url = {http://eudml.org/doc/75308},
volume = {48},
year = {1998},
}

TY - JOUR
AU - Sanz, Fernando
TI - Non oscillating solutions of analytic gradient vector fields
JO - Annales de l'institut Fourier
PY - 1998
PB - Association des Annales de l'Institut Fourier
VL - 48
IS - 4
SP - 1045
EP - 1067
AB - Let $\gamma $ be an integral solution of an analytic real vector field $\xi $ defined in a neighbordhood of $0\in {\Bbb R}^3$. Suppose that $\gamma $ has a single limit point, $\omega (\gamma )=\lbrace 0\rbrace $. We say that $\gamma $ is non oscillating if, for any analytic surface $H$, either $\gamma $ is contained in $H$ or $\gamma $ cuts $H$ only finitely many times. In this paper we give a sufficient condition for $\gamma $ to be non oscillating. It is established in terms of the existence of “generalized iterated tangents”, i.e. the existence of a single limit point for any transform property for the solutions of a gradient vector field $\xi =\nabla _g f$ of an analytic function $f$ of order 2 at $0\in {\Bbb R}^3$, where $g$ is an analytic riemannian metric.
LA - eng
KW - vector field; gradient; tangent; oscillation; blowing-up; desingularization; center manifold
UR - http://eudml.org/doc/75308
ER -

References

top
  1. [1] J.M. AROCA, H. HIRONAKA, J.L. VICENTE, The theory of the maximal contact, Mem. Mat. Inst. Jorge Juan, Madrid, 29 (1975). Zbl0366.32008MR56 #3344
  2. [2] J. CARR, Applications of Center Manifolds Theory Applied Mathematical Sciences, vol. 35, Springer-Verlag, New York (1981). Zbl0464.58001MR83g:34039
  3. [3] P. HARTMAN, On Local Homeomorphisms of Euclidean Spaces, Bol. Soc. Mat. Mexicana, 5 (1960), 220-241. Zbl0127.30202MR25 #5253
  4. [4] H. HIRONAKA, Desingularization of Excellent Surfaces, Adv. Sci. Seminar (1967), Bodwoin College. Lect. Notes in Math., 1101, Springer-Verlag (1984). 
  5. [5] M.W. HIRSCH, C.C. PUGH, M. SHUB, Invariant Manifolds, Lect. Notes in Math., 583, Springer-Verlag (1977). Zbl0355.58009MR58 #18595
  6. [6] H. XING LIN, Sur la structure des champs de gradients de fonctions analytiques réelles, Thèse, Paris VII (1992). 
  7. [7] F. ICHIKAWA, Thom's conjecture on singularities of gradient vector fields, Kodai Math. Journal, 15 (1992), 134-140. Zbl0762.34011MR93i:58019
  8. [8] Al. KELLEY, Stability of the Center-Stable Manifold, Jour. of Math. Anal. and Appl., 18 (1967), 336-344. Zbl0166.08304MR35 #1883
  9. [9] K. KURDYKA, T. MOSTOWSKI, The gradient conjecture of R, Thom Preprint (1996). Zbl1053.37008
  10. [10] S. LOJASIEWICZ, Sur les trajectoires du gradient d'une fonction analytique Seminari di Geometria, Bologna (1983), 115-117. Zbl0606.58045
  11. [11] R. MOUSSU, Sur la dynamique des gradients, Existence de variétés invariantes Math. Ann., 307 (1997), 445-460. Zbl0882.58040
  12. [12] R. MOUSSU, C. ROCHE, Théorèmes de finitude pour les variétés plaffiennes, Ann. Inst. Fourier, Grenoble, 42-1 & 2 (1992), 393-420. Zbl0759.32005MR93h:32010
  13. [13] J. PALIS, F. TAKENS, Topological equivalence of normally hyperbolic dynamical systems, Topology, 16 (1977), 335-345. Zbl0391.58015MR57 #14049
  14. [14] F. SANZ, Trajectoires non-oscillantes des champs de vecteurs gradients. C. R. Acad. Sci. Paris, t. 325, Série I (1997), 429-432. Zbl0889.58049MR98h:58153
  15. [15] M. SHUB, Stabilité globale des systèmes dynamiques, Astérisque, vol. 56. Soc. Math. de France (1978). Zbl0396.58014MR80c:58015
  16. [16] R. THOM, Problèmes rencontrés dans mon parcours mathématique : un bilan, Publ. IHES, 70 (1989), 200-214. Zbl0709.58001MR92a:58001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.