Non oscillating solutions of analytic gradient vector fields

Fernando Sanz

Annales de l'institut Fourier (1998)

  • Volume: 48, Issue: 4, page 1045-1067
  • ISSN: 0373-0956

Abstract

top
Let γ be an integral solution of an analytic real vector field ξ defined in a neighbordhood of 0 3 . Suppose that γ has a single limit point, ω ( γ ) = { 0 } . We say that γ is non oscillating if, for any analytic surface H , either γ is contained in H or γ cuts H only finitely many times. In this paper we give a sufficient condition for γ to be non oscillating. It is established in terms of the existence of “generalized iterated tangents”, i.e. the existence of a single limit point for any transform property for the solutions of a gradient vector field ξ = g f of an analytic function f of order 2 at 0 3 , where g is an analytic riemannian metric.

How to cite

top

Sanz, Fernando. "Non oscillating solutions of analytic gradient vector fields." Annales de l'institut Fourier 48.4 (1998): 1045-1067. <http://eudml.org/doc/75308>.

@article{Sanz1998,
abstract = {Let $\gamma $ be an integral solution of an analytic real vector field $\xi $ defined in a neighbordhood of $0\in \{\Bbb R\}^3$. Suppose that $\gamma $ has a single limit point, $\omega (\gamma )=\lbrace 0\rbrace $. We say that $\gamma $ is non oscillating if, for any analytic surface $H$, either $\gamma $ is contained in $H$ or $\gamma $ cuts $H$ only finitely many times. In this paper we give a sufficient condition for $\gamma $ to be non oscillating. It is established in terms of the existence of “generalized iterated tangents”, i.e. the existence of a single limit point for any transform property for the solutions of a gradient vector field $\xi =\nabla _g f$ of an analytic function $f$ of order 2 at $0\in \{\Bbb R\}^3$, where $g$ is an analytic riemannian metric.},
author = {Sanz, Fernando},
journal = {Annales de l'institut Fourier},
keywords = {vector field; gradient; tangent; oscillation; blowing-up; desingularization; center manifold},
language = {eng},
number = {4},
pages = {1045-1067},
publisher = {Association des Annales de l'Institut Fourier},
title = {Non oscillating solutions of analytic gradient vector fields},
url = {http://eudml.org/doc/75308},
volume = {48},
year = {1998},
}

TY - JOUR
AU - Sanz, Fernando
TI - Non oscillating solutions of analytic gradient vector fields
JO - Annales de l'institut Fourier
PY - 1998
PB - Association des Annales de l'Institut Fourier
VL - 48
IS - 4
SP - 1045
EP - 1067
AB - Let $\gamma $ be an integral solution of an analytic real vector field $\xi $ defined in a neighbordhood of $0\in {\Bbb R}^3$. Suppose that $\gamma $ has a single limit point, $\omega (\gamma )=\lbrace 0\rbrace $. We say that $\gamma $ is non oscillating if, for any analytic surface $H$, either $\gamma $ is contained in $H$ or $\gamma $ cuts $H$ only finitely many times. In this paper we give a sufficient condition for $\gamma $ to be non oscillating. It is established in terms of the existence of “generalized iterated tangents”, i.e. the existence of a single limit point for any transform property for the solutions of a gradient vector field $\xi =\nabla _g f$ of an analytic function $f$ of order 2 at $0\in {\Bbb R}^3$, where $g$ is an analytic riemannian metric.
LA - eng
KW - vector field; gradient; tangent; oscillation; blowing-up; desingularization; center manifold
UR - http://eudml.org/doc/75308
ER -

References

top
  1. [1] J.M. AROCA, H. HIRONAKA, J.L. VICENTE, The theory of the maximal contact, Mem. Mat. Inst. Jorge Juan, Madrid, 29 (1975). Zbl0366.32008MR56 #3344
  2. [2] J. CARR, Applications of Center Manifolds Theory Applied Mathematical Sciences, vol. 35, Springer-Verlag, New York (1981). Zbl0464.58001MR83g:34039
  3. [3] P. HARTMAN, On Local Homeomorphisms of Euclidean Spaces, Bol. Soc. Mat. Mexicana, 5 (1960), 220-241. Zbl0127.30202MR25 #5253
  4. [4] H. HIRONAKA, Desingularization of Excellent Surfaces, Adv. Sci. Seminar (1967), Bodwoin College. Lect. Notes in Math., 1101, Springer-Verlag (1984). 
  5. [5] M.W. HIRSCH, C.C. PUGH, M. SHUB, Invariant Manifolds, Lect. Notes in Math., 583, Springer-Verlag (1977). Zbl0355.58009MR58 #18595
  6. [6] H. XING LIN, Sur la structure des champs de gradients de fonctions analytiques réelles, Thèse, Paris VII (1992). 
  7. [7] F. ICHIKAWA, Thom's conjecture on singularities of gradient vector fields, Kodai Math. Journal, 15 (1992), 134-140. Zbl0762.34011MR93i:58019
  8. [8] Al. KELLEY, Stability of the Center-Stable Manifold, Jour. of Math. Anal. and Appl., 18 (1967), 336-344. Zbl0166.08304MR35 #1883
  9. [9] K. KURDYKA, T. MOSTOWSKI, The gradient conjecture of R, Thom Preprint (1996). Zbl1053.37008
  10. [10] S. LOJASIEWICZ, Sur les trajectoires du gradient d'une fonction analytique Seminari di Geometria, Bologna (1983), 115-117. Zbl0606.58045
  11. [11] R. MOUSSU, Sur la dynamique des gradients, Existence de variétés invariantes Math. Ann., 307 (1997), 445-460. Zbl0882.58040
  12. [12] R. MOUSSU, C. ROCHE, Théorèmes de finitude pour les variétés plaffiennes, Ann. Inst. Fourier, Grenoble, 42-1 & 2 (1992), 393-420. Zbl0759.32005MR93h:32010
  13. [13] J. PALIS, F. TAKENS, Topological equivalence of normally hyperbolic dynamical systems, Topology, 16 (1977), 335-345. Zbl0391.58015MR57 #14049
  14. [14] F. SANZ, Trajectoires non-oscillantes des champs de vecteurs gradients. C. R. Acad. Sci. Paris, t. 325, Série I (1997), 429-432. Zbl0889.58049MR98h:58153
  15. [15] M. SHUB, Stabilité globale des systèmes dynamiques, Astérisque, vol. 56. Soc. Math. de France (1978). Zbl0396.58014MR80c:58015
  16. [16] R. THOM, Problèmes rencontrés dans mon parcours mathématique : un bilan, Publ. IHES, 70 (1989), 200-214. Zbl0709.58001MR92a:58001

NotesEmbed ?

top

You must be logged in to post comments.