Pointwise estimates for the weighted Bergman projection kernel in , using a weighted estimate for the equation
Annales de l'institut Fourier (1998)
- Volume: 48, Issue: 4, page 967-997
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topDelin, Henrik. "Pointwise estimates for the weighted Bergman projection kernel in ${\mathbb {C}}^n$, using a weighted $L^2$ estimate for the $\bar{\partial }$ equation." Annales de l'institut Fourier 48.4 (1998): 967-997. <http://eudml.org/doc/75317>.
@article{Delin1998,
abstract = {Weighted $L^2$ estimates are obtained for the canonical solution to the $\bar\{\partial \}$ equation in $L^2(\{\Bbb C\}^n,e^\{-\varphi \}d\lambda )$, where $\Omega $ is a pseudoconvex domain, and $\varphi $ is a strictly plurisubharmonic function. These estimates are then used to prove pointwise estimates for the Bergman projection kernel in $L^2(\{\Bbb C\}^n,e^\{-\varphi \}d\lambda )$. The weight is used to obtain a factor $e^\{-\epsilon \rho (z,\zeta ) \}$ in the estimate of the kernel, where $\rho $ is the distance function in the Kähler metric given by the metric form $i\partial \bar\{\partial \}\varphi $.},
author = {Delin, Henrik},
journal = {Annales de l'institut Fourier},
keywords = {Bergman kernel; weighted Bergman spaces; Kähler metrics},
language = {eng},
number = {4},
pages = {967-997},
publisher = {Association des Annales de l'Institut Fourier},
title = {Pointwise estimates for the weighted Bergman projection kernel in $\{\mathbb \{C\}\}^n$, using a weighted $L^2$ estimate for the $\bar\{\partial \}$ equation},
url = {http://eudml.org/doc/75317},
volume = {48},
year = {1998},
}
TY - JOUR
AU - Delin, Henrik
TI - Pointwise estimates for the weighted Bergman projection kernel in ${\mathbb {C}}^n$, using a weighted $L^2$ estimate for the $\bar{\partial }$ equation
JO - Annales de l'institut Fourier
PY - 1998
PB - Association des Annales de l'Institut Fourier
VL - 48
IS - 4
SP - 967
EP - 997
AB - Weighted $L^2$ estimates are obtained for the canonical solution to the $\bar{\partial }$ equation in $L^2({\Bbb C}^n,e^{-\varphi }d\lambda )$, where $\Omega $ is a pseudoconvex domain, and $\varphi $ is a strictly plurisubharmonic function. These estimates are then used to prove pointwise estimates for the Bergman projection kernel in $L^2({\Bbb C}^n,e^{-\varphi }d\lambda )$. The weight is used to obtain a factor $e^{-\epsilon \rho (z,\zeta ) }$ in the estimate of the kernel, where $\rho $ is the distance function in the Kähler metric given by the metric form $i\partial \bar{\partial }\varphi $.
LA - eng
KW - Bergman kernel; weighted Bergman spaces; Kähler metrics
UR - http://eudml.org/doc/75317
ER -
References
top- [1] S. BERGMAN, The kernel function and conformal mapping, American Mathematical Society, Providence, R.I., revised ed., 1970, Mathematical Surveys, no V. Zbl0208.34302MR58 #22502
- [2] B. BERNDTSSON, Uniform estimates with weights for the ∂-equation, to appear in J. Geom. Analysis. Zbl0923.32014
- [3] I. CHAVEL, Riemannian geometry - a modern introduction, vol. 108 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1993. Zbl0810.53001MR95j:53001
- [4] M. CHRIST, On the ∂ equation in weighted L2 norms in ℂ1, J. Geom. Anal., 1 (1991), 193-230. Zbl0737.35011MR92j:32066
- [5] K. DIEDERICH and G. HERBORT, Extension of holomorphic L2-functions with weighted growth conditions, Nagoya Math. J., 126 (1992), 141-157. Zbl0759.32002MR93h:32016
- [6] K. DIEDERICH and T. OHSAWA, An estimate for the Bergman distance on pseudoconvex domains, Ann. of Math. (2), 141 (1995), 181-190. Zbl0828.32002MR95j:32039
- [7] H. DONNELLY and C. FEFFERMAN, L2-cohomology and index theorem for the Bergman metric, Ann. of Math. (2), 118 (1983), 593-618. Zbl0532.58027MR85f:32029
- [8] S. DRAGOMIR, On weighted Bergman kernels of bounded domains, Studia Math., 108 (1994), 149-157. Zbl0818.32006MR94m:32034
- [9] G. M. HENKIN and J. LEITERER, Theory of functions on complex manifolds, vol. 79 of Monographs in Mathematics, Birkhäuser Verlag, Basel, 1984. Zbl0726.32001MR86a:32002
- [10] L. HÖRMANDER, L2 estimates and existence for the ∂ operator, Acta Mathematica, 113 (1965), 89-152. Zbl0158.11002
- [11] N. KERZMAN, The Bergman kernel function. Differentiability at the boundary, Math. Ann., 195 (1972), 149-158.
- [12] P. LELONG and L. GRUMAN, Entire functions of several complex variables, Grundlehren der Mathematischen Wissenschaften [Fundamental Principales of Mathematical Sciences], 282, Springer-Verlag, Berlin, 1986. Zbl0583.32001MR87j:32001
- [13] J. D. MCNEAL, Boundary behavior of the Bergman kernel function in ℂ2, Duke Math. J., 58 (1989), 499-512. Zbl0675.32020MR91c:32017
- [14] J. D. MCNEAL, On large values of L2 holomorphic functions, Math. Res. Lett., 3 (1996), 247-259. Zbl0865.32009MR97e:32004
- [15] A. NAGEL, J.-P. ROSAY, E. M. STEIN, and S. WAINGER, Estimates for the Bergman and Szegö kernels in ℂ2, Ann. of Math. (2), 129 (1989), 113-149. Zbl0667.32016MR90g:32028
- [16] T. OHSAWA and K. TAKEGOSHI, On the extension of L2 holomorphic functions, Math. Z., 195 (1987), 197-204. Zbl0625.32011MR88g:32029
- [17] R. SCHOEN and S.-T. YAU, Lectures on differential geometry, Conference Proceedings and Lecture Notes in Geometry and Topology, I, International Press, Cambridge, MA, 1994. Zbl0830.53001MR97d:53001
- [18] Y.-T. SIU, Complex-analyticity of harmonic maps, vanishing and Lefschetz theorems, J. Differential Geometry, 17 (1982), 55-138. Zbl0497.32025MR83j:58039
- [19] Y.-T. SIU, The Fujita conjecture and the extension theorem of Ohsawa-Takegoshi, in Geometric Complex Analysis (Hayma, 1995), World Sci. Publishing, River Edge, NJ (1996), 577-592. Zbl0941.32021MR98f:32033
- [20] R. O. WELLS, JR, Differential analysis on complex manifolds, Prentice-Hall, 1973. Zbl0262.32005
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.