Pointwise estimates for the weighted Bergman projection kernel in n , using a weighted L 2 estimate for the ¯ equation

Henrik Delin

Annales de l'institut Fourier (1998)

  • Volume: 48, Issue: 4, page 967-997
  • ISSN: 0373-0956

Abstract

top
Weighted L 2  estimates are obtained for the canonical solution to the equation in L 2 ( n , e - φ d λ ) , where Ω is a pseudoconvex domain, and φ is a strictly plurisubharmonic function. These estimates are then used to prove pointwise estimates for the Bergman projection kernel in L 2 ( n , e - φ d λ ) . The weight is used to obtain a factor e - ϵ ρ ( z , ζ ) in the estimate of the kernel, where ρ is the distance function in the Kähler metric given by the metric form i φ .

How to cite

top

Delin, Henrik. "Pointwise estimates for the weighted Bergman projection kernel in ${\mathbb {C}}^n$, using a weighted $L^2$ estimate for the $\bar{\partial }$ equation." Annales de l'institut Fourier 48.4 (1998): 967-997. <http://eudml.org/doc/75317>.

@article{Delin1998,
abstract = {Weighted $L^2$ estimates are obtained for the canonical solution to the $\bar\{\partial \}$ equation in $L^2(\{\Bbb C\}^n,e^\{-\varphi \}d\lambda )$, where $\Omega $ is a pseudoconvex domain, and $\varphi $ is a strictly plurisubharmonic function. These estimates are then used to prove pointwise estimates for the Bergman projection kernel in $L^2(\{\Bbb C\}^n,e^\{-\varphi \}d\lambda )$. The weight is used to obtain a factor $e^\{-\epsilon \rho (z,\zeta ) \}$ in the estimate of the kernel, where $\rho $ is the distance function in the Kähler metric given by the metric form $i\partial \bar\{\partial \}\varphi $.},
author = {Delin, Henrik},
journal = {Annales de l'institut Fourier},
keywords = {Bergman kernel; weighted Bergman spaces; Kähler metrics},
language = {eng},
number = {4},
pages = {967-997},
publisher = {Association des Annales de l'Institut Fourier},
title = {Pointwise estimates for the weighted Bergman projection kernel in $\{\mathbb \{C\}\}^n$, using a weighted $L^2$ estimate for the $\bar\{\partial \}$ equation},
url = {http://eudml.org/doc/75317},
volume = {48},
year = {1998},
}

TY - JOUR
AU - Delin, Henrik
TI - Pointwise estimates for the weighted Bergman projection kernel in ${\mathbb {C}}^n$, using a weighted $L^2$ estimate for the $\bar{\partial }$ equation
JO - Annales de l'institut Fourier
PY - 1998
PB - Association des Annales de l'Institut Fourier
VL - 48
IS - 4
SP - 967
EP - 997
AB - Weighted $L^2$ estimates are obtained for the canonical solution to the $\bar{\partial }$ equation in $L^2({\Bbb C}^n,e^{-\varphi }d\lambda )$, where $\Omega $ is a pseudoconvex domain, and $\varphi $ is a strictly plurisubharmonic function. These estimates are then used to prove pointwise estimates for the Bergman projection kernel in $L^2({\Bbb C}^n,e^{-\varphi }d\lambda )$. The weight is used to obtain a factor $e^{-\epsilon \rho (z,\zeta ) }$ in the estimate of the kernel, where $\rho $ is the distance function in the Kähler metric given by the metric form $i\partial \bar{\partial }\varphi $.
LA - eng
KW - Bergman kernel; weighted Bergman spaces; Kähler metrics
UR - http://eudml.org/doc/75317
ER -

References

top
  1. [1] S. BERGMAN, The kernel function and conformal mapping, American Mathematical Society, Providence, R.I., revised ed., 1970, Mathematical Surveys, no V. Zbl0208.34302MR58 #22502
  2. [2] B. BERNDTSSON, Uniform estimates with weights for the ∂-equation, to appear in J. Geom. Analysis. Zbl0923.32014
  3. [3] I. CHAVEL, Riemannian geometry - a modern introduction, vol. 108 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1993. Zbl0810.53001MR95j:53001
  4. [4] M. CHRIST, On the ∂ equation in weighted L2 norms in ℂ1, J. Geom. Anal., 1 (1991), 193-230. Zbl0737.35011MR92j:32066
  5. [5] K. DIEDERICH and G. HERBORT, Extension of holomorphic L2-functions with weighted growth conditions, Nagoya Math. J., 126 (1992), 141-157. Zbl0759.32002MR93h:32016
  6. [6] K. DIEDERICH and T. OHSAWA, An estimate for the Bergman distance on pseudoconvex domains, Ann. of Math. (2), 141 (1995), 181-190. Zbl0828.32002MR95j:32039
  7. [7] H. DONNELLY and C. FEFFERMAN, L2-cohomology and index theorem for the Bergman metric, Ann. of Math. (2), 118 (1983), 593-618. Zbl0532.58027MR85f:32029
  8. [8] S. DRAGOMIR, On weighted Bergman kernels of bounded domains, Studia Math., 108 (1994), 149-157. Zbl0818.32006MR94m:32034
  9. [9] G. M. HENKIN and J. LEITERER, Theory of functions on complex manifolds, vol. 79 of Monographs in Mathematics, Birkhäuser Verlag, Basel, 1984. Zbl0726.32001MR86a:32002
  10. [10] L. HÖRMANDER, L2 estimates and existence for the ∂ operator, Acta Mathematica, 113 (1965), 89-152. Zbl0158.11002
  11. [11] N. KERZMAN, The Bergman kernel function. Differentiability at the boundary, Math. Ann., 195 (1972), 149-158. 
  12. [12] P. LELONG and L. GRUMAN, Entire functions of several complex variables, Grundlehren der Mathematischen Wissenschaften [Fundamental Principales of Mathematical Sciences], 282, Springer-Verlag, Berlin, 1986. Zbl0583.32001MR87j:32001
  13. [13] J. D. MCNEAL, Boundary behavior of the Bergman kernel function in ℂ2, Duke Math. J., 58 (1989), 499-512. Zbl0675.32020MR91c:32017
  14. [14] J. D. MCNEAL, On large values of L2 holomorphic functions, Math. Res. Lett., 3 (1996), 247-259. Zbl0865.32009MR97e:32004
  15. [15] A. NAGEL, J.-P. ROSAY, E. M. STEIN, and S. WAINGER, Estimates for the Bergman and Szegö kernels in ℂ2, Ann. of Math. (2), 129 (1989), 113-149. Zbl0667.32016MR90g:32028
  16. [16] T. OHSAWA and K. TAKEGOSHI, On the extension of L2 holomorphic functions, Math. Z., 195 (1987), 197-204. Zbl0625.32011MR88g:32029
  17. [17] R. SCHOEN and S.-T. YAU, Lectures on differential geometry, Conference Proceedings and Lecture Notes in Geometry and Topology, I, International Press, Cambridge, MA, 1994. Zbl0830.53001MR97d:53001
  18. [18] Y.-T. SIU, Complex-analyticity of harmonic maps, vanishing and Lefschetz theorems, J. Differential Geometry, 17 (1982), 55-138. Zbl0497.32025MR83j:58039
  19. [19] Y.-T. SIU, The Fujita conjecture and the extension theorem of Ohsawa-Takegoshi, in Geometric Complex Analysis (Hayma, 1995), World Sci. Publishing, River Edge, NJ (1996), 577-592. Zbl0941.32021MR98f:32033
  20. [20] R. O. WELLS, JR, Differential analysis on complex manifolds, Prentice-Hall, 1973. Zbl0262.32005

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.