On weighted Bergman kernels of bounded domains

Sorin Dragomir

Studia Mathematica (1994)

  • Volume: 108, Issue: 2, page 149-157
  • ISSN: 0039-3223

Abstract

top
We build on work by Z. Pasternak-Winiarski [PW2], and study a-Bergman kernels of bounded domains Ω N for admissible weights a L ¹ ( Ω ) .

How to cite

top

Dragomir, Sorin. "On weighted Bergman kernels of bounded domains." Studia Mathematica 108.2 (1994): 149-157. <http://eudml.org/doc/216046>.

@article{Dragomir1994,
abstract = {We build on work by Z. Pasternak-Winiarski [PW2], and study a-Bergman kernels of bounded domains $Ω ⊂ ℂ^N$ for admissible weights $a ∈ L¹(Ω)$.},
author = {Dragomir, Sorin},
journal = {Studia Mathematica},
keywords = {admissible weight; a-Bergman kernel; a-Bergman metric; weighted Bergman kernels; bounded domain; group of holomorphic diffeomorphisms},
language = {eng},
number = {2},
pages = {149-157},
title = {On weighted Bergman kernels of bounded domains},
url = {http://eudml.org/doc/216046},
volume = {108},
year = {1994},
}

TY - JOUR
AU - Dragomir, Sorin
TI - On weighted Bergman kernels of bounded domains
JO - Studia Mathematica
PY - 1994
VL - 108
IS - 2
SP - 149
EP - 157
AB - We build on work by Z. Pasternak-Winiarski [PW2], and study a-Bergman kernels of bounded domains $Ω ⊂ ℂ^N$ for admissible weights $a ∈ L¹(Ω)$.
LA - eng
KW - admissible weight; a-Bergman kernel; a-Bergman metric; weighted Bergman kernels; bounded domain; group of holomorphic diffeomorphisms
UR - http://eudml.org/doc/216046
ER -

References

top
  1. [Be] S. Bergman, Über die Kernfunktion eines Bereiches und ihr Verhalten am Rande, J. Reine Angew. Math. 169 (1933), 1-42. 
  2. [Bo] B. Berndtsson, Weighted estimates for ∂̅ in domains in ℂ, preprint, Göteborg, 1992. Zbl0774.35048
  3. [He] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York, 1978, 352-372. 
  4. [Ho] L. Hörmander, L² estimates and existence theorems for the ∂̅ operator, Acta Math. 113 (1965), 89-152. Zbl0158.11002
  5. [J] F. John, Partial Differential Equations, Springer, New York, 1982. Zbl0472.35001
  6. [Ke] N. Kerzman, The Bergman kernel function. Differentiability at the boundary, Math. Ann. 195 (1972), 149-158. 
  7. [Kl] P. F. Klembeck, Kähler metrics of negative curvature, the Bergman metric near the boundary, and the Kobayashi metric on smooth bounded strictly pseudoconvex sets, Indiana Univ. Math. J. (2) 27 (1978), 275-282. Zbl0422.53032
  8. [Ko] J. J. Kohn, Harmonic integrals on strongly pseudoconvex manifolds I, II, Ann. of Math. 78 (1963), 112-148; 79 (1964), 450-472. 
  9. [Ku] A. Kufner, Weighted Sobolev Spaces, Wiley, Chichester, 1985. 
  10. [M1] T. Mazur, Canonical isometry on weighted Bergman spaces, Pacific J. Math. 136 (1989), 303-310. Zbl0677.46015
  11. [M2] T. Mazur, On the complex manifolds of Bergman type, in: Classical Analysis, Proc. 6-th Symposium, 23-29 September 1991, Poland, World Scientific, 1992, 132-138. 
  12. [N] R. Narasimhan, Several Complex Variables, The Univ. of Chicago Press, Chicago, 1971. Zbl0223.32001
  13. [PW1] Z. Pasternak-Winiarski, On the dependence of the reproducing kernel on the weight of integration, J. Funct. Anal. 94 (1990), 110-134. Zbl0739.46010
  14. [PW2] Z. Pasternak-Winiarski, On weights which admit the reproducing kernel of Bergman type, Internat. J. Math. Math. Sci. 15 (1992), 1-14. Zbl0749.32019

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.