Dimension globale et classe fondamentale d'un espace

Youssef Rami

Annales de l'institut Fourier (1999)

  • Volume: 49, Issue: 1, page 333-350
  • ISSN: 0373-0956

Abstract

top
The Pontryagin algebra of a K -elliptic space satisfy the Auslander-Buchsbaum-Serre theorem. We give some characterizations of the K -elliptic spaces with H * ( Ω S ; K ) of finite global dimension and with ( S , K ) in the Anick range. We also introduce an “ xt -odd” spectral sequence and complete the results obtained by A. Murillo in the rational case.

How to cite

top

Rami, Youssef. "Dimension globale et classe fondamentale d'un espace." Annales de l'institut Fourier 49.1 (1999): 333-350. <http://eudml.org/doc/75339>.

@article{Rami1999,
abstract = {L’algèbre de Pontryagin d’un espace $K$-elliptique vérifie le théorème d’Auslander-Buchsbaum-Serre. Nous donnons ici plusieurs caractérisations des espaces $K$-elliptiques tels que gldim($H_*(\Omega S;K))&lt; \infty $ et lorsque $(S,K)$ est dans le domaine d’Anick. Nous introduisons aussi une suite spectrale “impaire des $\{\cal E\}\{\rm xt\}$” et complétons les résultats obtenus par A. Murillo dans le cas rationnel.},
author = {Rami, Youssef},
journal = {Annales de l'institut Fourier},
keywords = {-elliptic spaces; global dimension; evaluation map},
language = {fre},
number = {1},
pages = {333-350},
publisher = {Association des Annales de l'Institut Fourier},
title = {Dimension globale et classe fondamentale d'un espace},
url = {http://eudml.org/doc/75339},
volume = {49},
year = {1999},
}

TY - JOUR
AU - Rami, Youssef
TI - Dimension globale et classe fondamentale d'un espace
JO - Annales de l'institut Fourier
PY - 1999
PB - Association des Annales de l'Institut Fourier
VL - 49
IS - 1
SP - 333
EP - 350
AB - L’algèbre de Pontryagin d’un espace $K$-elliptique vérifie le théorème d’Auslander-Buchsbaum-Serre. Nous donnons ici plusieurs caractérisations des espaces $K$-elliptiques tels que gldim($H_*(\Omega S;K))&lt; \infty $ et lorsque $(S,K)$ est dans le domaine d’Anick. Nous introduisons aussi une suite spectrale “impaire des ${\cal E}{\rm xt}$” et complétons les résultats obtenus par A. Murillo dans le cas rationnel.
LA - fre
KW - -elliptic spaces; global dimension; evaluation map
UR - http://eudml.org/doc/75339
ER -

References

top
  1. [1] D. ANICK, Hopf algebras up to homotopy, J. Amer. Math. Soc., 2 (1989), 417-453. Zbl0681.55006MR90c:16007
  2. [2] L. BISIAUX, Depth and Toomer's invariant, à paraître dans, Topology and its Applications. Zbl0938.55013
  3. [3] Y. FÉLIX, La dichotomie elliptique-hyperbolique en homotopie rationnelle, Astérisque, 176 (1989). Zbl0691.55001MR91c:55016
  4. [4] Y. FÉLIX and S. HALPERIN, Rational L-S category and its applications, Trans. Amer. Math. Soc., 273 (1982), 1-73. Zbl0508.55004MR84h:55011
  5. [5] Y. FÉLIX, S. HALPERIN and J.-M. LEMAIRE and J.-C. THOMAS, Mod p loop space homology, Invent. Math., 95 (1989), 247-262. Zbl0667.55007MR89k:55010
  6. [6] Y. FÉLIX, S. HALPERIN and J.-M. LEMAIRE, The Ganea conjecture and the L-S category of Poincaré duality complexes, Preprint Univ. Nice (1997). 
  7. [7] Y. FÉLIX, S. HALPERIN and J.-C. THOMAS, The Homotopy Lie algebra for finite complexes, Publ. I.H.E.S., 56 (1983), 89-96. 
  8. [8] Y. FÉLIX, S. HALPERIN and J.-C. THOMAS, Gorenstein spaces, Adv. in Maths, 71 (1988), 92-112. Zbl0659.57011MR89k:55019
  9. [9] Y. FÉLIX, S. HALPERIN and J.-C. THOMAS, Elliptic Hopf algebras, J. London. Math. Soc., (2) 43 (1991), 545-555. Zbl0755.57018MR92i:57033
  10. [10] Y. FÉLIX, S. HALPERIN and J.-C. THOMAS, Hopf algebres of polynomial growth, J. Algebra, 125 (1989), 408-417. Zbl0676.16008MR90j:16021
  11. [11] Y. FÉLIX, S. HALPERIN and J.-C. THOMAS, Rational Homotopy Theory, Preprint Université d'Angers (1997). Zbl0961.55002
  12. [12] Y. FÉLIX, S. HALPERIN and J.-C. THOMAS, Hopf algebras and a counterexample to a conjecture of Anick, J. of Algebra, 169 (1994), 176-193. Zbl0814.16036MR95j:16050
  13. [13] Y. FÉLIX, S. HALPERIN, C. JACOBSON, C. LÖFWALL and J.-C. THOMAS, The radical of the homotopy Lie algebra, Amer. J. Math., 110 (1988), 301-322. Zbl0654.55011MR89d:55029
  14. [14] W.H. GREUB, S. HALPERIN and J.R. VANSTONE, Connexions, Curvatures and Cohomology, Vol. III, Academic Press, New York, 1975. Zbl0372.57001
  15. [15] S. HALPERIN, Finiteness in the minimal models of Sullivan, Trans. Amer. Math. Soc., 230 (1977), 173-199. Zbl0364.55014MR57 #1493
  16. [16] S. HALPERIN, Universal enveloping algebras and loop space homology, J. Pure Appl. Algebra, 83 (1992), 237-282. Zbl0769.57025MR93k:55014
  17. [17] S. HALPERIN and J.-M. LEMAIRE, Notion of category in differential algebra, in Algebraic Topology — Rational Homotopy, Lecture Notes in Mathematics, 1318 (1988), 138-154. Zbl0656.55003MR89h:55023
  18. [18] I. JAMES, On category, in the sense of Lusternik-Schnirelmann, Topology, 17 (1978), 331-348. Zbl0408.55008
  19. [19] A. MURILLO, The evaluation map of some Gorenstien algebras, J. Pure. Appl. Algebra, 91 (1994), 209-218. Zbl0789.55011MR94m:55012
  20. [20] A. MURILLO, The Top cohomology class of certain spaces, J. Pure. App. Algebra, 84 (1993), 209-214. Zbl0766.55007MR93k:55015
  21. [21] J.-P. SERRE, Algèbre locale, Multiplicités, Lecture Notes in Mathematics, 11 (1975). Zbl0296.13018
  22. [22] D. SULLIVAN, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math., 47 (1978), 269-331. Zbl0374.57002MR58 #31119
  23. [23] G.H. TOOMER, Lusternik-Schnirelmann category and the Moore spectral sequence, Math. Z., 138 (1974), 123-143. Zbl0284.55012MR50 #8509

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.