Algebraic and symplectic Gromov-Witten invariants coincide

Bernd Siebert

Annales de l'institut Fourier (1999)

  • Volume: 49, Issue: 6, page 1743-1795
  • ISSN: 0373-0956

Abstract

top
For a complex projective manifold Gromov-Witten invariants can be constructed either algebraically or symplectically. Using the versions of Gromov-Witten theory by Behrend and Fantechi on the algebraic side and by the author on the symplectic side, we prove that both points of view are equivalent

How to cite

top

Siebert, Bernd. "Algebraic and symplectic Gromov-Witten invariants coincide." Annales de l'institut Fourier 49.6 (1999): 1743-1795. <http://eudml.org/doc/75401>.

@article{Siebert1999,
abstract = {For a complex projective manifold Gromov-Witten invariants can be constructed either algebraically or symplectically. Using the versions of Gromov-Witten theory by Behrend and Fantechi on the algebraic side and by the author on the symplectic side, we prove that both points of view are equivalent},
author = {Siebert, Bernd},
journal = {Annales de l'institut Fourier},
keywords = {Gromov-Witten invariants; virtual fundamental class; Grothendieck duality; derived category; moduli space; homology class},
language = {eng},
number = {6},
pages = {1743-1795},
publisher = {Association des Annales de l'Institut Fourier},
title = {Algebraic and symplectic Gromov-Witten invariants coincide},
url = {http://eudml.org/doc/75401},
volume = {49},
year = {1999},
}

TY - JOUR
AU - Siebert, Bernd
TI - Algebraic and symplectic Gromov-Witten invariants coincide
JO - Annales de l'institut Fourier
PY - 1999
PB - Association des Annales de l'Institut Fourier
VL - 49
IS - 6
SP - 1743
EP - 1795
AB - For a complex projective manifold Gromov-Witten invariants can be constructed either algebraically or symplectically. Using the versions of Gromov-Witten theory by Behrend and Fantechi on the algebraic side and by the author on the symplectic side, we prove that both points of view are equivalent
LA - eng
KW - Gromov-Witten invariants; virtual fundamental class; Grothendieck duality; derived category; moduli space; homology class
UR - http://eudml.org/doc/75401
ER -

References

top
  1. [Be] K. BEHREND, GW-invariants in algebraic geometry, Inv. Math., 127 (1997), 601-617. Zbl0909.14007MR98i:14015
  2. [BeFa] K. BEHREND, B. FANTECHI, The intrinsic normal cone, Inv. Math., 128 (1997), 45-88. Zbl0909.14006MR98e:14022
  3. [BeMa] K. BEHREND, Y. MANIN, Stacks of stable maps and Gromov-Witten invariants, Duke. Math. Journ., 85 (1996), 1-60. Zbl0872.14019MR98i:14014
  4. [BiKo] J. BINGENER, S. KOSAREW, Lokale Modulräume in der analytischen Geometrie I, II, Vieweg 1987. Zbl0644.32001
  5. [Do] A. DOUADY, Le problème des modules locaux pour les espaces ℂ-analytiques compacts, Ann. Sci. École Norm. Sup. (4), 7 (1974), 569-602. Zbl0313.32036MR52 #3611
  6. [Fi] G. FISCHER, Complex analytic geometry, Lecture Notes Math., 538, Springer, 1976. Zbl0343.32002MR55 #3291
  7. [Fl] H. FLENNER, Über Deformationen holomorpher Abbildungen, Habilitationsschrift, Univ. Osnabrück, 1978. 
  8. [FkOn] K. FUKAYA, K. ONO, Arnold conjecture and Gromov-Witten invariant, Warwick preprint 29/1996. 
  9. [Fu] W. FULTON, Intersection theory, Springer, 1984. Zbl0541.14005MR85k:14004
  10. [FuPa] W. FULTON, R. PANDHARIPANDE, Notes on stable maps and quantum cohomology, to appear in the proceedings of the Algebraic Geometry Conference, Santa Cruz, 1995. Zbl0898.14018
  11. [Ha] R. HARTSHORNE, Residues and duality, Lecture Notes Math., 20, Springer, 1966. Zbl0212.26101
  12. [Il] L. ILLUSIE, Complexe cotagent et déformations I, Lecture Notes Math., 239, Springer, 1971. Zbl0224.13014MR58 #10886a
  13. [Iv] B. IVERSEN, Cohomology of Sheaves, Springer, 1986. Zbl0559.55001MR87m:14013
  14. [Ka] T. KAWASAKI, The signature theorem for V-manifolds, Topology, 17 (1978), 75-83. Zbl0392.58009MR57 #14072
  15. [Kn] F. KNUDSON, The projectivity of the moduli space of stable curves, II: The stacks Mg, n, Math. Scand., 52 (1983), 161-199. Zbl0544.14020MR85d:14038a
  16. [KpKp] B. KAUP, L. KAUP, Holomorphic functions of several variables, de Gruyter, 1983. 
  17. [LiTi1] J. LI, G. TIAN, Virtual moduli cycles and GW-invariants of algebraic varieties, Journal Amer. Math. Soc., 11 (1998), 119-174. Zbl0912.14004MR99d:14011
  18. [LiTi2] J. LI, G. TIAN, Virtual moduli cycles and Gromov-Witten invariants of general symplectic manifolds, preprint alg-geom/9608032. Zbl0978.53136
  19. [LiTi3] J. LI, G. TIAN, Comparison of the algebraic and the symplectic Gromov-Witten invariants, preprint alg-geom/9712035. Zbl0983.53061
  20. [Lp] J. LIPMAN, Notes on Derived Categories and Derived Functors, preprint, available from http://www.math.purdue.edu/~lipman. 
  21. [Po] G. POURCIN, Théorème de Douady au-dessus de S, Ann. Scuola Norm. Sup. Pisa, 23 (1969), 451-459. Zbl0186.14003MR41 #2053
  22. [RaRuVe] J. P. RAMIS, G. RUGET, J.-L. VERDIER, Dualité relative en géométrie analytique complexe, Invent. Math., 13 (1971), 261-283. Zbl0218.14010MR46 #7553
  23. [Ru1] Y. RUAN, Topological sigma model and Donaldson type invariants in Gromov theory, Duke Math. Journ., 83 (1996), 461-500. Zbl0864.53032MR97d:58042
  24. [Ru2] Y. RUAN, Virtual neighborhoods and pseudo-holomorphic curves, preprint alg-geom/ 9611021. Zbl0967.53055
  25. [RuTi1] Y. RUAN, G. TIAN, A mathematical theory of quantum cohomology, Journ. Diff. Geom., 42 (1995), 259-367. Zbl0860.58005MR96m:58033
  26. [RuTi2] Y. RUAN, G. TIAN, Higher genus symplectic invariants and sigma model coupled with gravity, Inv. Math., 130 (1997), 455-516. Zbl0904.58066MR99d:58030
  27. [Sa] I. SATAKE, The Gauss-Bonnet theorem for V-manifolds, Journ. Math. Soc. Japan, 9 (1957), 164-492. Zbl0080.37403MR20 #2022
  28. [Se] J.-P. SERRE, Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier, Grenoble, 6 (1956), 1-42. Zbl0075.30401MR18,511a
  29. [Si1] B. SIEBERT, Gromov-Witten invariants for general symplectic manifolds, preprint dg-ga/9608032, revised 12/97. 
  30. [Si2] B. SIEBERT, Global normal cones, virtual fundamental classes and Fulton's canonical classes, preprint 2/1997. 
  31. [Si3] B. SIEBERT, Symplectic Gromov-Witten invariants, to appear in New trends in Algebraic Geometry, F. Catanese, K. Hulek, C. Peters, M. Reid (eds.), Cambridge Univ. Press, 1998. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.