Prime to p fundamental groups and tame Galois actions

Mark Kisin

Annales de l'institut Fourier (2000)

  • Volume: 50, Issue: 4, page 1099-1126
  • ISSN: 0373-0956

Abstract

top
We show that for a local, discretely valued field F , with residue characteristic p , and a variety 𝒰 over F , the map ρ : Gal ( F sep / F ) Out ( π 1 , geom ( p ' ) ( 𝒰 ) ) to the outer automorphisms of the prime to p geometric étale fundamental group of 𝒰 maps the wild inertia onto a finite image. We show that under favourable conditions ρ depends only on the reduction of 𝒰 modulo a power of the maximal ideal of F . The proofs make use of the theory of logarithmic schemes.

How to cite

top

Kisin, Mark. "Prime to $p$ fundamental groups and tame Galois actions." Annales de l'institut Fourier 50.4 (2000): 1099-1126. <http://eudml.org/doc/75450>.

@article{Kisin2000,
abstract = {We show that for a local, discretely valued field $F$, with residue characteristic $p$, and a variety $\{\cal U\}$ over $F$, the map $\rho : \{\rm Gal\}(F^\{\{\rm sep\}\}/F)\rightarrow \{\rm Out\}(\pi _\{1,\{\rm geom\}\}^\{(p^\{\prime \})\}(\{\cal U\}))$ to the outer automorphisms of the prime to $p$ geometric étale fundamental group of $\{\cal U\}$ maps the wild inertia onto a finite image. We show that under favourable conditions $\rho $ depends only on the reduction of $\{\cal U\}$ modulo a power of the maximal ideal of $F$. The proofs make use of the theory of logarithmic schemes.},
author = {Kisin, Mark},
journal = {Annales de l'institut Fourier},
keywords = {local field; absolute Galois group; rigid analysis},
language = {eng},
number = {4},
pages = {1099-1126},
publisher = {Association des Annales de l'Institut Fourier},
title = {Prime to $p$ fundamental groups and tame Galois actions},
url = {http://eudml.org/doc/75450},
volume = {50},
year = {2000},
}

TY - JOUR
AU - Kisin, Mark
TI - Prime to $p$ fundamental groups and tame Galois actions
JO - Annales de l'institut Fourier
PY - 2000
PB - Association des Annales de l'Institut Fourier
VL - 50
IS - 4
SP - 1099
EP - 1126
AB - We show that for a local, discretely valued field $F$, with residue characteristic $p$, and a variety ${\cal U}$ over $F$, the map $\rho : {\rm Gal}(F^{{\rm sep}}/F)\rightarrow {\rm Out}(\pi _{1,{\rm geom}}^{(p^{\prime })}({\cal U}))$ to the outer automorphisms of the prime to $p$ geometric étale fundamental group of ${\cal U}$ maps the wild inertia onto a finite image. We show that under favourable conditions $\rho $ depends only on the reduction of ${\cal U}$ modulo a power of the maximal ideal of $F$. The proofs make use of the theory of logarithmic schemes.
LA - eng
KW - local field; absolute Galois group; rigid analysis
UR - http://eudml.org/doc/75450
ER -

References

top
  1. [deJ1] A.J. de JONG, Smoothness, semi-stability and alterations, Inst. des Hautes Etudes Sci. Publ. Math., 83 (1996), 51-93. Zbl0916.14005MR98e:14011
  2. [deJ2] A.J. de JONG, Crystalline Dieudonné module theory via formal and rigid geometry, Inst. des Hautes Etudes Sci. Publ. Math., 82 (1995), 5-96. Zbl0864.14009MR97f:14047
  3. [EGA] A. GROTHENDIECK, J. DIEUDONNÉ, Eléments de géométrie algébrique I, II, III, IV, Inst. des Hautes Etudes Sci. Publ. Math., 4, 8, 11, 17, 20, 24, 28, 32 (1961-1967). 
  4. [FK] K. FUJIWARA, K. KATO, Logarithmic Étale Topology Theory, preprint. 
  5. [Ful] W. FULTON, Introduction to Toric Varieties, Annals of Mathematics Studies 131, Princeton University Press, Princeton, 1993. Zbl0813.14039MR94g:14028
  6. [Ka1] K. KATO, Logarithmic Structures of Fontaine-Illusie, Algebraic Analysis, Geometry, and Number Theory, Proceedings of the JAMI Inaugural Conference, The John Hopkins University Press, Baltimore and London, 191-224, 1989. Zbl0776.14004MR99b:14020
  7. [Ka2] K. KATO, Toric Singularities, Amer. J. Math., 116 (1994), 1073-1099. Zbl0832.14002MR95g:14056
  8. [Ki1] M. KISIN, Local Constancy in Families of Non-Abelian Galois Representations, To appear in Math. Z., 16 pages. Zbl0980.14019
  9. [Ki2] M. KISIN, Local Constancy in p-adic Familes of Galois Representations, Math. Z., 230(3) (1999), 569-593. Zbl0932.32028MR2000f:14034
  10. [Ki3] M. KISIN, Endomorphisms of Logarithimic Schemes, SFB 478, Münster (1999). 
  11. [Lut] W. LÜTKEBOHMERT, Riemann's existence problem for a p-adic field, Invent. Math., 111 (1993), 309-330. Zbl0780.32005MR94d:32048
  12. [Mat] H. MATSUMURA, Commutative Ring Theory, Cambridge Studies in Advanced Mathematics 8, Cambridge University Press, 1986. Zbl0603.13001MR88h:13001
  13. [Na] C. NAKAYAMA, Nearby Cycles for log smooth families, Compositio Math., 112 (1998), 45-75. Zbl0926.14006MR99g:14044
  14. [Na2] C. NAKAYAMA, Logarithmic étale cohomology, Math. Ann., 308 (1997), 365-404. Zbl0877.14016MR98j:14022
  15. [RZ] M. RAPOPORT, Th. ZINK, Über die lokale Zetafunktion von Shimuravarietäten. Monodromiefiltration und verschwindende Zyklen in ungleicher Charakteristik., Invent. Math., 68 (1982), 21-101. Zbl0498.14010
  16. [SGA1] A. GROTHENDIECK, Revetment Étale et Groupe Fundamental, Lect. Notes in Math. 224, Springer, Heidelberg, 1970. 
  17. [SGA2] A. GROTHENDIECK, Cohomologie Locale des Faisceaux Cohérents et Théorèmes des Lefschetz Locaux et Globaux, North-Holland, Amsterdam, 1962. Zbl0159.50402

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.