Prime to fundamental groups and tame Galois actions
Annales de l'institut Fourier (2000)
- Volume: 50, Issue: 4, page 1099-1126
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topKisin, Mark. "Prime to $p$ fundamental groups and tame Galois actions." Annales de l'institut Fourier 50.4 (2000): 1099-1126. <http://eudml.org/doc/75450>.
@article{Kisin2000,
abstract = {We show that for a local, discretely valued field $F$, with residue characteristic $p$, and a variety $\{\cal U\}$ over $F$, the map $\rho : \{\rm Gal\}(F^\{\{\rm sep\}\}/F)\rightarrow \{\rm Out\}(\pi _\{1,\{\rm geom\}\}^\{(p^\{\prime \})\}(\{\cal U\}))$ to the outer automorphisms of the prime to $p$ geometric étale fundamental group of $\{\cal U\}$ maps the wild inertia onto a finite image. We show that under favourable conditions $\rho $ depends only on the reduction of $\{\cal U\}$ modulo a power of the maximal ideal of $F$. The proofs make use of the theory of logarithmic schemes.},
author = {Kisin, Mark},
journal = {Annales de l'institut Fourier},
keywords = {local field; absolute Galois group; rigid analysis},
language = {eng},
number = {4},
pages = {1099-1126},
publisher = {Association des Annales de l'Institut Fourier},
title = {Prime to $p$ fundamental groups and tame Galois actions},
url = {http://eudml.org/doc/75450},
volume = {50},
year = {2000},
}
TY - JOUR
AU - Kisin, Mark
TI - Prime to $p$ fundamental groups and tame Galois actions
JO - Annales de l'institut Fourier
PY - 2000
PB - Association des Annales de l'Institut Fourier
VL - 50
IS - 4
SP - 1099
EP - 1126
AB - We show that for a local, discretely valued field $F$, with residue characteristic $p$, and a variety ${\cal U}$ over $F$, the map $\rho : {\rm Gal}(F^{{\rm sep}}/F)\rightarrow {\rm Out}(\pi _{1,{\rm geom}}^{(p^{\prime })}({\cal U}))$ to the outer automorphisms of the prime to $p$ geometric étale fundamental group of ${\cal U}$ maps the wild inertia onto a finite image. We show that under favourable conditions $\rho $ depends only on the reduction of ${\cal U}$ modulo a power of the maximal ideal of $F$. The proofs make use of the theory of logarithmic schemes.
LA - eng
KW - local field; absolute Galois group; rigid analysis
UR - http://eudml.org/doc/75450
ER -
References
top- [deJ1] A.J. de JONG, Smoothness, semi-stability and alterations, Inst. des Hautes Etudes Sci. Publ. Math., 83 (1996), 51-93. Zbl0916.14005MR98e:14011
- [deJ2] A.J. de JONG, Crystalline Dieudonné module theory via formal and rigid geometry, Inst. des Hautes Etudes Sci. Publ. Math., 82 (1995), 5-96. Zbl0864.14009MR97f:14047
- [EGA] A. GROTHENDIECK, J. DIEUDONNÉ, Eléments de géométrie algébrique I, II, III, IV, Inst. des Hautes Etudes Sci. Publ. Math., 4, 8, 11, 17, 20, 24, 28, 32 (1961-1967).
- [FK] K. FUJIWARA, K. KATO, Logarithmic Étale Topology Theory, preprint.
- [Ful] W. FULTON, Introduction to Toric Varieties, Annals of Mathematics Studies 131, Princeton University Press, Princeton, 1993. Zbl0813.14039MR94g:14028
- [Ka1] K. KATO, Logarithmic Structures of Fontaine-Illusie, Algebraic Analysis, Geometry, and Number Theory, Proceedings of the JAMI Inaugural Conference, The John Hopkins University Press, Baltimore and London, 191-224, 1989. Zbl0776.14004MR99b:14020
- [Ka2] K. KATO, Toric Singularities, Amer. J. Math., 116 (1994), 1073-1099. Zbl0832.14002MR95g:14056
- [Ki1] M. KISIN, Local Constancy in Families of Non-Abelian Galois Representations, To appear in Math. Z., 16 pages. Zbl0980.14019
- [Ki2] M. KISIN, Local Constancy in p-adic Familes of Galois Representations, Math. Z., 230(3) (1999), 569-593. Zbl0932.32028MR2000f:14034
- [Ki3] M. KISIN, Endomorphisms of Logarithimic Schemes, SFB 478, Münster (1999).
- [Lut] W. LÜTKEBOHMERT, Riemann's existence problem for a p-adic field, Invent. Math., 111 (1993), 309-330. Zbl0780.32005MR94d:32048
- [Mat] H. MATSUMURA, Commutative Ring Theory, Cambridge Studies in Advanced Mathematics 8, Cambridge University Press, 1986. Zbl0603.13001MR88h:13001
- [Na] C. NAKAYAMA, Nearby Cycles for log smooth families, Compositio Math., 112 (1998), 45-75. Zbl0926.14006MR99g:14044
- [Na2] C. NAKAYAMA, Logarithmic étale cohomology, Math. Ann., 308 (1997), 365-404. Zbl0877.14016MR98j:14022
- [RZ] M. RAPOPORT, Th. ZINK, Über die lokale Zetafunktion von Shimuravarietäten. Monodromiefiltration und verschwindende Zyklen in ungleicher Charakteristik., Invent. Math., 68 (1982), 21-101. Zbl0498.14010
- [SGA1] A. GROTHENDIECK, Revetment Étale et Groupe Fundamental, Lect. Notes in Math. 224, Springer, Heidelberg, 1970.
- [SGA2] A. GROTHENDIECK, Cohomologie Locale des Faisceaux Cohérents et Théorèmes des Lefschetz Locaux et Globaux, North-Holland, Amsterdam, 1962. Zbl0159.50402
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.