Covers in p -adic analytic geometry and log covers I: Cospecialization of the ( p ) -tempered fundamental group for a family of curves

Emmanuel Lepage[1]

  • [1] Université Pierre et Marie Curie Institut Mathématique de Jussieu 4 place Jussieu 75005 PARIS (France)

Annales de l’institut Fourier (2013)

  • Volume: 63, Issue: 4, page 1427-1467
  • ISSN: 0373-0956

Abstract

top
The tempered fundamental group of a p -adic analytic space classifies covers that are dominated by a topological cover (for the Berkovich topology) of a finite étale cover of the space. Here we construct cospecialization homomorphisms between ( p ) versions of the tempered fundamental groups of the fibers of a smooth family of curves with semistable reduction. To do so, we will translate our problem in terms of cospecialization morphisms of fundamental groups of the log fibers of the log reduction and we will prove the invariance of the geometric log fundamental group of log smooth log schemes over a log point by change of log point.

How to cite

top

Lepage, Emmanuel. "Covers in $p$-adic analytic geometry and log covers I: Cospecialization of the $(p^{\prime})$-tempered fundamental group for a family of curves." Annales de l’institut Fourier 63.4 (2013): 1427-1467. <http://eudml.org/doc/275554>.

@article{Lepage2013,
abstract = {The tempered fundamental group of a $p$-adic analytic space classifies covers that are dominated by a topological cover (for the Berkovich topology) of a finite étale cover of the space. Here we construct cospecialization homomorphisms between $(p^\{\prime\})$ versions of the tempered fundamental groups of the fibers of a smooth family of curves with semistable reduction. To do so, we will translate our problem in terms of cospecialization morphisms of fundamental groups of the log fibers of the log reduction and we will prove the invariance of the geometric log fundamental group of log smooth log schemes over a log point by change of log point.},
affiliation = {Université Pierre et Marie Curie Institut Mathématique de Jussieu 4 place Jussieu 75005 PARIS (France)},
author = {Lepage, Emmanuel},
journal = {Annales de l’institut Fourier},
keywords = {fundamental groups; Berkovich spaces; specialization},
language = {eng},
number = {4},
pages = {1427-1467},
publisher = {Association des Annales de l’institut Fourier},
title = {Covers in $p$-adic analytic geometry and log covers I: Cospecialization of the $(p^\{\prime\})$-tempered fundamental group for a family of curves},
url = {http://eudml.org/doc/275554},
volume = {63},
year = {2013},
}

TY - JOUR
AU - Lepage, Emmanuel
TI - Covers in $p$-adic analytic geometry and log covers I: Cospecialization of the $(p^{\prime})$-tempered fundamental group for a family of curves
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 4
SP - 1427
EP - 1467
AB - The tempered fundamental group of a $p$-adic analytic space classifies covers that are dominated by a topological cover (for the Berkovich topology) of a finite étale cover of the space. Here we construct cospecialization homomorphisms between $(p^{\prime})$ versions of the tempered fundamental groups of the fibers of a smooth family of curves with semistable reduction. To do so, we will translate our problem in terms of cospecialization morphisms of fundamental groups of the log fibers of the log reduction and we will prove the invariance of the geometric log fundamental group of log smooth log schemes over a log point by change of log point.
LA - eng
KW - fundamental groups; Berkovich spaces; specialization
UR - http://eudml.org/doc/275554
ER -

References

top
  1. Yves André, On a geometric description of Gal ( Q ¯ p / Q p ) and a p -adic avatar of G T ^ , Duke Math. J. 119 (2003), 1-39 Zbl1155.11356MR1991645
  2. Yves André, Period mappings and differential equations. From to p , 12 (2003), Mathematical Society of Japan, Tokyo MR1978691
  3. Vladimir G. Berkovich, Spectral theory and analytic geometry over non-Archimedean fields, 33 (1990), American Mathematical Society, Providence, RI Zbl0715.14013MR1070709
  4. Vladimir G. Berkovich, Smooth p -adic analytic spaces are locally contractible, Invent. Math. 137 (1999), 1-84 Zbl0930.32016MR1702143
  5. Jean Giraud, Cohomologie non abélienne, 179 (1971), Springer-Verlag Zbl0226.14011MR344253
  6. Revêtements étales et groupe fondamental (SGA1), 224 (1971), GrothendieckAlexanderA., Berlin 
  7. Alexander Grothendieck, J. Dieudonné, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas (Quatrième partie), Inst. Hautes Études Sci., Publications Mathématiques (1967), 5-361 Zbl0153.22301MR238860
  8. Luc Illusie, An Overview of the works of K. Fujiwara, K. Kato, and C. Nakayama on logarithmic étale cohomology, Cohomologies -adiques et applications arithmétiques (II) 279 (2002), 271-322, Société Mathématique de France Zbl1052.14005MR1922832
  9. Luc Illusie, Kazuya Kato, Chikara Nakayama, Erratum to: Quasi-unipotent logarithmic Riemann-Hilbert correspondences [J. Math. Sci. Univ. Tokyo 12 (2005), no. 1, 1–66; MR2126784], J. Math. Sci. Univ. Tokyo 14 (2007), 113-116 Zbl1082.14024MR2320387
  10. A. J. de Jong, Étale fundamental groups of non-Archimedean analytic spaces, Compositio Math. 97 (1995), 89-118 Zbl0864.14012MR1355119
  11. Kazuya Kato, Logarithmic structures of Fontaine-Illusie, Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988) (1989), 191-224, Johns Hopkins Univ. Press, Baltimore, MD Zbl0776.14004MR1463703
  12. Mark Kisin, Prime to p fundamental groups, and tame Galois actions, Ann. Inst. Fourier (Grenoble) 50 (2000), 1099-1126 Zbl0961.14014MR1799739
  13. Vik. S. Kulikov, Degenerations of K 3 surfaces and Enriques surfaces, Izv. Akad. Nauk SSSR Ser. Mat. 11 (1977), 957-989 Zbl0387.14007MR506296
  14. Emmanuel Lepage, Coverings in p -adic analytic geometry and log coverings II: Cospecialization of the ( p ) -tempered fundamental group in higher dimensions Zbl1260.14024
  15. Emmanuel Lepage, Tempered fundamental group and metric graph of a Mumford curve, Publ. Res. Inst. Math. Sci. 46 (2010), 849-897 Zbl1213.14047MR2791009
  16. Shinichi Mochizuki, Semi-graphs of anabelioids, Publ. Res. Inst. Math. Sci. 42 (2006), 221-322 Zbl1113.14025MR2215441
  17. Arthur Ogus, Lectures on logarithmic algebraic geometry Zbl1100.14507
  18. Martin Ch. Olsson, Log algebraic stacks and moduli of log schemes, (2001), ProQuest LLC, Ann Arbor, MI MR2702292
  19. Fabrice Orgogozo, Erratum et compléments à l’article Altérations et groupe fondamental premier à p paru au Bulletin de la S.M.F. (131), tome 1, 2003, unpublished Zbl1083.14506MR1975807
  20. Fabrice Orgogozo, Altérations et groupe fondamental premier à p , Bull. Soc. Math. France 131 (2003), 123-147 Zbl1083.14506MR1975807
  21. Michel Raynaud, Anneaux locaux henséliens, (1970), Springer-Verlag, Berlin Zbl0203.05102MR277519
  22. Jakob Stix, Projective anabelian curves in positive characteristic and descent theory for log-étale covers, (2002), Universität Bonn Mathematisches Institut, Bonn Zbl1077.14040MR2012864
  23. Takeshi Tsuji, Saturated morphisms of logarithmic schemes, (1997) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.