Schrödinger operators with form-bounded potentials in -spaces
Annales de l'I.H.P. Physique théorique (1990)
- Volume: 52, Issue: 2, page 151-161
- ISSN: 0246-0211
Access Full Article
topHow to cite
topPerelmuter, M. A.. "Schrödinger operators with form-bounded potentials in $L^p$-spaces." Annales de l'I.H.P. Physique théorique 52.2 (1990): 151-161. <http://eudml.org/doc/76481>.
@article{Perelmuter1990,
author = {Perelmuter, M. A.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {dense range; -accretive; contraction -semigroup},
language = {eng},
number = {2},
pages = {151-161},
publisher = {Gauthier-Villars},
title = {Schrödinger operators with form-bounded potentials in $L^p$-spaces},
url = {http://eudml.org/doc/76481},
volume = {52},
year = {1990},
}
TY - JOUR
AU - Perelmuter, M. A.
TI - Schrödinger operators with form-bounded potentials in $L^p$-spaces
JO - Annales de l'I.H.P. Physique théorique
PY - 1990
PB - Gauthier-Villars
VL - 52
IS - 2
SP - 151
EP - 161
LA - eng
KW - dense range; -accretive; contraction -semigroup
UR - http://eudml.org/doc/76481
ER -
References
top- [1] A.Ya. Povzner, On the Expansions of Arbitrary Functions in Terms of Eigenfunctions of the Operator -Δu+Cu, Mat. Sbornik, Vol. 32, No. 1, 1953, pp. 109-156 ; A.M.S. Trans. Ser.2, Vol. 60, 1967, pp. 1-49. Zbl0179.14504MR53330
- [2] M.A. Perelmuter, Positivity Preserving Operators and One Criterion of Essential Self-Adjointness, J. Math. Anal. Appl., Vol. 82, No. 2, 1981, pp. 406-419. Zbl0482.47017MR629767
- [3] Yu.A. Semenov, One Criterion of Essential Self-Adjointness of the Schrödinger Operator with Negative Potential, Kiev, preprint, 1987.
- [4] V.F. Kovalenko, M.A. Perelmuter, Yu.A. Semenov, Schrödinger Operators with Ll/2w (Rl)-Potentials, J. Math. Phys., Vol. 22, No. 5, 1981, pp. 1033-1044. Zbl0463.47027MR622855
- [5] Yu.A. Semenov, On the Spectral Theory of Second-Order Elliptic Differential Operators, Math. U.S.S.R. Sbornik, Vol. 56, No. 1, 1987, pp. 221-247. Zbl0608.35046
- [6] V.F. Kovalenko and Yu.A. Semenov, Lp-Contractivity of the Semigroup Generated by the Schrödinger Operator with Singular Negative Potential, Kiev, preprint, 1985.
- [7] T. Kato, Lp-theory of Schrödinger Operators with a Singular Potential, in Aspects of Positivity Funct. Anal. Proc. Conf., Tübingen, 24-28 June 1985, Amsterdam e. a., 1986, pp. 41-48. MR859719
- [8] W.P. Novinger, Mean Convergence in Lp Spaces, Proc. Am. Math. Soc., Vol. 34, No. 2, 1972, pp. 627-628. Zbl0254.28011MR294595
- [9] R.A. Adams, Sobolev Spaces, New York e. a., Academic Press, 1975. Zbl0314.46030MR450957
- [10] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, New York e. a., Academic Press, 1980. Zbl0457.35001MR567696
- [11] M. Reed and B. Simon, Methods of Modern Mathematical Physics, New York, San Francisco, London, Academic Press, 1978. Zbl0401.47001
- [12] N. Th. Varopoulos, Hardy-Littlewood Theory for Semi-Groups, J. Funct. Anal., Vol. 63, No. 2, 1985, pp. 240-260. Zbl0608.47047MR803094
- [13] C.G. Simader, Essential Self-Adjointness of Schrödinger Operators Bounded from Below, Math. Z., Vol. 159, No. 1, 1978, pp. 47-50. Zbl0409.35026MR470456
- [14] H. Brezis, "Localized" Self-Adjointness of Schrödinder Operators, J. Oper. Theor., Vol. 1, No. 2, 1979, pp. 287-290. Zbl0439.35021
- [15] M. Combescure-Moulin and J. Ginibre, Essential Self-Adjointness of Many-Particle Schrödinger Hamiltonians with Singular Twobody Potentials, Ann. Inst. H. Poincaré, Vol. A23, No. 3, 1975, p. 211-234. Zbl0343.47007
- [16] V.F. Kovalenko and Yu.A. Semenov, Essential Self-Adjointness of Many-Particle Hamiltonian Operators of Schrödinger Type with Singular Two-Particle Potentials, Ann. Inst. H. Poincaré, Vol. A24, No. 4, 1977, pp. 325-334. MR441154
- [17] E.H. Lieb and W.E. Thirring, Gravitational Collapse in Quantum Mechanics with Relativistic Kinetic Energy, Ann. Phys. (U.S.A.), Vol. 155, No. 2, 1984, pp. 494-512. MR753345
- [18] C.J.K. Batty and E.B. Davies, Positive Semi-Groups and Resolvents, J. Oper. Theor., Vol. 10, No. 2, 1983, pp. 357-363. Zbl0529.47026MR728915
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.