Schrödinger operators with form-bounded potentials in L p -spaces

M. A. Perelmuter

Annales de l'I.H.P. Physique théorique (1990)

  • Volume: 52, Issue: 2, page 151-161
  • ISSN: 0246-0211

How to cite

top

Perelmuter, M. A.. "Schrödinger operators with form-bounded potentials in $L^p$-spaces." Annales de l'I.H.P. Physique théorique 52.2 (1990): 151-161. <http://eudml.org/doc/76481>.

@article{Perelmuter1990,
author = {Perelmuter, M. A.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {dense range; -accretive; contraction -semigroup},
language = {eng},
number = {2},
pages = {151-161},
publisher = {Gauthier-Villars},
title = {Schrödinger operators with form-bounded potentials in $L^p$-spaces},
url = {http://eudml.org/doc/76481},
volume = {52},
year = {1990},
}

TY - JOUR
AU - Perelmuter, M. A.
TI - Schrödinger operators with form-bounded potentials in $L^p$-spaces
JO - Annales de l'I.H.P. Physique théorique
PY - 1990
PB - Gauthier-Villars
VL - 52
IS - 2
SP - 151
EP - 161
LA - eng
KW - dense range; -accretive; contraction -semigroup
UR - http://eudml.org/doc/76481
ER -

References

top
  1. [1] A.Ya. Povzner, On the Expansions of Arbitrary Functions in Terms of Eigenfunctions of the Operator -Δu+Cu, Mat. Sbornik, Vol. 32, No. 1, 1953, pp. 109-156 ; A.M.S. Trans. Ser.2, Vol. 60, 1967, pp. 1-49. Zbl0179.14504MR53330
  2. [2] M.A. Perelmuter, Positivity Preserving Operators and One Criterion of Essential Self-Adjointness, J. Math. Anal. Appl., Vol. 82, No. 2, 1981, pp. 406-419. Zbl0482.47017MR629767
  3. [3] Yu.A. Semenov, One Criterion of Essential Self-Adjointness of the Schrödinger Operator with Negative Potential, Kiev, preprint, 1987. 
  4. [4] V.F. Kovalenko, M.A. Perelmuter, Yu.A. Semenov, Schrödinger Operators with Ll/2w (Rl)-Potentials, J. Math. Phys., Vol. 22, No. 5, 1981, pp. 1033-1044. Zbl0463.47027MR622855
  5. [5] Yu.A. Semenov, On the Spectral Theory of Second-Order Elliptic Differential Operators, Math. U.S.S.R. Sbornik, Vol. 56, No. 1, 1987, pp. 221-247. Zbl0608.35046
  6. [6] V.F. Kovalenko and Yu.A. Semenov, Lp-Contractivity of the Semigroup Generated by the Schrödinger Operator with Singular Negative Potential, Kiev, preprint, 1985. 
  7. [7] T. Kato, Lp-theory of Schrödinger Operators with a Singular Potential, in Aspects of Positivity Funct. Anal. Proc. Conf., Tübingen, 24-28 June 1985, Amsterdam e. a., 1986, pp. 41-48. MR859719
  8. [8] W.P. Novinger, Mean Convergence in Lp Spaces, Proc. Am. Math. Soc., Vol. 34, No. 2, 1972, pp. 627-628. Zbl0254.28011MR294595
  9. [9] R.A. Adams, Sobolev Spaces, New York e. a., Academic Press, 1975. Zbl0314.46030MR450957
  10. [10] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, New York e. a., Academic Press, 1980. Zbl0457.35001MR567696
  11. [11] M. Reed and B. Simon, Methods of Modern Mathematical Physics, New York, San Francisco, London, Academic Press, 1978. Zbl0401.47001
  12. [12] N. Th. Varopoulos, Hardy-Littlewood Theory for Semi-Groups, J. Funct. Anal., Vol. 63, No. 2, 1985, pp. 240-260. Zbl0608.47047MR803094
  13. [13] C.G. Simader, Essential Self-Adjointness of Schrödinger Operators Bounded from Below, Math. Z., Vol. 159, No. 1, 1978, pp. 47-50. Zbl0409.35026MR470456
  14. [14] H. Brezis, "Localized" Self-Adjointness of Schrödinder Operators, J. Oper. Theor., Vol. 1, No. 2, 1979, pp. 287-290. Zbl0439.35021
  15. [15] M. Combescure-Moulin and J. Ginibre, Essential Self-Adjointness of Many-Particle Schrödinger Hamiltonians with Singular Twobody Potentials, Ann. Inst. H. Poincaré, Vol. A23, No. 3, 1975, p. 211-234. Zbl0343.47007
  16. [16] V.F. Kovalenko and Yu.A. Semenov, Essential Self-Adjointness of Many-Particle Hamiltonian Operators of Schrödinger Type with Singular Two-Particle Potentials, Ann. Inst. H. Poincaré, Vol. A24, No. 4, 1977, pp. 325-334. MR441154
  17. [17] E.H. Lieb and W.E. Thirring, Gravitational Collapse in Quantum Mechanics with Relativistic Kinetic Energy, Ann. Phys. (U.S.A.), Vol. 155, No. 2, 1984, pp. 494-512. MR753345
  18. [18] C.J.K. Batty and E.B. Davies, Positive Semi-Groups and Resolvents, J. Oper. Theor., Vol. 10, No. 2, 1983, pp. 357-363. Zbl0529.47026MR728915

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.