Symmetry breaking for molecular open systems

E. B. Davies

Annales de l'I.H.P. Physique théorique (1981)

  • Volume: 35, Issue: 2, page 149-171
  • ISSN: 0246-0211

How to cite

top

Davies, E. B.. "Symmetry breaking for molecular open systems." Annales de l'I.H.P. Physique théorique 35.2 (1981): 149-171. <http://eudml.org/doc/76135>.

@article{Davies1981,
author = {Davies, E. B.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {ground states; Hartree approximation; molecular open systems; free boson reservoirs; variational principle for the total energy functional; Hartree states; symmetry breaking; molecular structure},
language = {eng},
number = {2},
pages = {149-171},
publisher = {Gauthier-Villars},
title = {Symmetry breaking for molecular open systems},
url = {http://eudml.org/doc/76135},
volume = {35},
year = {1981},
}

TY - JOUR
AU - Davies, E. B.
TI - Symmetry breaking for molecular open systems
JO - Annales de l'I.H.P. Physique théorique
PY - 1981
PB - Gauthier-Villars
VL - 35
IS - 2
SP - 149
EP - 171
LA - eng
KW - ground states; Hartree approximation; molecular open systems; free boson reservoirs; variational principle for the total energy functional; Hartree states; symmetry breaking; molecular structure
UR - http://eudml.org/doc/76135
ER -

References

top
  1. [1] R.F.W. Bader, Y. Tal, S.G. Anderson, and T.T. Nguyen-Dang, Quantum topology, theory of molecular structure and its change. Israel J. Chem., t. 19, 1980, p. 8-29. 
  2. [2] E.B. Davies, Symmetry breaking for a non-linear Schrodinger equation. Commun. Math, Phys., t. 64, 1979, p. 191-210. Zbl0405.35027MR520090
  3. [3] E.B. Davies, Metastable states of molecules. Commun. Math. Phys., t. 75, 1980, p. 263-283. Zbl0436.49034MR581949
  4. [4] E.B. Davies, One-parameter semigroups. Acad. Press, 1980. Zbl0457.47030MR591851
  5. [5] E.B. Davies and Ph.A. Martin, Metastable states of some ferromagnetic lattice systems. Preprint, 1980. 
  6. [6] R. Delbourgo and J.R. Fox, Maximal weight vectors possess minimal uncertainty. J. Phys., t. A 10, 1977, L, p. 233-235. MR480888
  7. [7] H. Essen, The physics of the Born-Oppenheimer approximation. Int. J. Quantum Chem., t. 12, 1977, p. 721-735. 
  8. [8] L.M. Falicov and R.A. Harris, Two-electron homopolar molecule: a test for spin-density waves and charge-density waves. J. Chem. Phys., t. 51, 1969, p. 3153-3158. 
  9. [9] H. Fikatome, Theory of the unrestricted Hartree-Fock equation and its solutions II. Prog. Theor. Phys., t. 52, 1974, p. 115-130. 
  10. [10] L.D. Landau and E.M. Lifshitz, Quantum mechanics, 3rd edition. Pergamon Press, 1977. Zbl0081.22207
  11. [11] L. Lathouwers and P. Van Leuven, Molecular spectra and the generator coordinate method. Int. J. Quantum Chem., t. 12, 1978, p. 371-375. 
  12. [12] E.H. Lieb, The classical limit of quantum spin systems. Commun. Math. Phys., t. 31, 1973, p. 327-340. Zbl1125.82305MR349181
  13. [13] E.H. Lieb, Existence and uniqueness of the minimising solution of Choquard's non-linear equation. Stud. Appl. Math., t. 57, 1977, p. 93-106. Zbl0369.35022MR471785
  14. [14] P.O. Löwdin, Discussion on the Hartree-Fock approximation. Rev. Mod. Phys., t. 35, 1963, p. 496-501. 
  15. [15] L. Michel, Symmetry defects and broken symmetry configurations. Hidden symmetry. Rev. Mod. Phys., t. 52, 1980, p. 617-651. MR578143
  16. [16] N.S. Ostlund, Complex and unrestricted Hartree-Fock wavefunctions. J. Chem. Phys., t. 57, 1972, p. 2994-2997. 
  17. [17] A.M. Perelomov, Coherent states for arbitrary Lie groups. Commun. Math. Phys., t. 26, 1972, p. 222-236. Zbl0243.22016MR363209
  18. [18] A.M. Perelomov, Description of generalised coherent states closest to classical states. Sov. J. Nucl. Phys., t. 29, 1979, p. 867-871. MR562426
  19. [19] P. Pfeifer, Chiral molecules, a superselection rule induced by the radiation field. Thesis, E. T. H. Zurich, 1980. 
  20. [20] P. Pfeifer, A non-linear Schrodinger equation yielding the shape of molecules by spontaneous symmetry breaking. In Classical, semiclassical and quantum mechanical problems in mathematics, chemistry and physics, ed. by K. Gustafson and W.P. Reinhardt, Plenum Press, 1980. 
  21. [21] P. Pfeifer, Private communication. 
  22. [22] H. Primas, Foundations of theoretical chemistry, p. 39-114 of Quantum dynamics of molecules, NATO Advanced Studies Institutes Series, Cambridge, 1979, ed. R. G. WOOLEY, Plenum Press, 1980. MR615394
  23. [23] M. Reed and B. Simon, Methods of modern mathematical physics, t. 2, Acad. Press, 1975. Zbl0308.47002
  24. [24] D.H. Sattinger, Bifurcation and symmetry breaking in applied mathematics. Bull. Amer. Math. Soc., t. 3, 1980, p. 779-819. Zbl0448.35011MR578374
  25. [25] B. Simon, The classical limit of quantum partition functions. Commun. Math. Phys., t. 71, 1980, p. 247-276. Zbl0436.22012MR565281
  26. [26] P. Van Leuven and L. Lathouwers, The generator coordinate method in molecular physics, p. 197-220 of NATO Advanced Studies Institute Series, Cambridge, 1979, ed. R. G. WOOLLEY, Plenum Press, 1980. 
  27. [27] R.G. Woolley, Quantum theory and molecular structure. Advan. Phys., t. 25, 1976, p. 27-52. 
  28. [28] R.G. Woolley, Quantum mechanical aspects of the molecular structure hypothesis. Israel, J. Chem., t. 19, 1980, p. 30-46. 
  29. [29] R. [29] R.G. Woolley, Private communication. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.