Inverse scattering for the one-dimensional Stark effect and application to the cylindrical KdV equation
Annales de l'I.H.P. Physique théorique (1982)
- Volume: 36, Issue: 1, page 41-58
- ISSN: 0246-0211
Access Full Article
topHow to cite
topGraffi, S., and Harrell, E.. "Inverse scattering for the one-dimensional Stark effect and application to the cylindrical KdV equation." Annales de l'I.H.P. Physique théorique 36.1 (1982): 41-58. <http://eudml.org/doc/76147>.
@article{Graffi1982,
author = {Graffi, S., Harrell, E.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {inverse scattering; one-dimensional Stark effect; cylindrical KdV equation; resonance; solitary wave; non-self-adjoint realization},
language = {eng},
number = {1},
pages = {41-58},
publisher = {Gauthier-Villars},
title = {Inverse scattering for the one-dimensional Stark effect and application to the cylindrical KdV equation},
url = {http://eudml.org/doc/76147},
volume = {36},
year = {1982},
}
TY - JOUR
AU - Graffi, S.
AU - Harrell, E.
TI - Inverse scattering for the one-dimensional Stark effect and application to the cylindrical KdV equation
JO - Annales de l'I.H.P. Physique théorique
PY - 1982
PB - Gauthier-Villars
VL - 36
IS - 1
SP - 41
EP - 58
LA - eng
KW - inverse scattering; one-dimensional Stark effect; cylindrical KdV equation; resonance; solitary wave; non-self-adjoint realization
UR - http://eudml.org/doc/76147
ER -
References
top- [1] W. Hunziker, Schrödinger Operators with Electric or Magnetic Fields, in Mathematical Problems in theoretical Physics, K. Osterwalder, ed. Lecture Notes in Physics, t. 116, Berlin, Heidelberg, and New York, Springer, 1980. Zbl0471.47010MR582602
- [2] I. Herbst, Schrödinger Operators with External Homogeneous Electric and Magnetic Fields, Lecture at the 1980 Erice Summer School in Mathematical Physics, to be published.
- [3] E.C. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential Equations, t. I, Oxtord, at the Clarendon Press, 1946. Zbl0061.13505
- [4] J.E. Avron and I. Herbst, Spectral and Scattering Theory of Schrödinger Operators Related to the Stark Effect, Comm. Math. Physics, t. 52, 1977, p. 239-254. Zbl0351.47007MR468862
- [5] I. Herbst, Unitary Equivalence of Stark Hamiltonians, Math. Z., t. 155, 1977, p. 55-70. Zbl0338.47009MR449318
- [6] F. Calogero and A. Degasperis, Inverse Spectral Problem for the One-Dimensional Schrödinger Equation with an Additional Linear Potential, Lett. al Nuovo Cim., t. 23, 1978, p. 143-149.Solution by the Spectral-Transform Method of a Nonlinear Evolution Equation Including as a Special Case the Cylindrical KdV, ibid., p. 150-154.Conservation Laws for a Nonlinear Evolution Equation that Includes as a Special Case the Cylindrical KdV Equation, ibid., p. 155-160. MR514528
- [7] E. Hille, Ordinary Differential Equations in the Complex Domain, New York, Wiley, 1976. Zbl0343.34007MR499382
- [8] F.W.J. Olver, Asymptotics and Special Functions, New York, Academic Press, 1974. Zbl0303.41035MR435697
- [9] P.P. Kulish, Obratnaya Zadacha Rasseyaniya dlya Uravneniya Shredingera na Osi, Mat. Zametki, t. 4, 1968, p. 677-684.
- [10] L.D. Faddeyev, The Inverse Problem in the Quantum Theory of Scattering, J. Math. Physics, t. 4, 1963, p. 72-104. Zbl0112.45101MR149843
- [11] M. Abramowitz and I.A. Stegun, eds. Handbook of Mathematical Functions, Applied Mathematics Series, t. 55, Washington, National Bureau of Standards, 1964.
- [12] M. Reed and B. Simon, Methods of Modern Mathematical Physics, t. 2, Fourier Analysis, Self-Adjointness, New York, Academic Press, 1975. Zbl0308.47002
- [13] D.V. Widder, The Airy Transform, Amer. Math. Monthly, t. 86, 1979, p. 271-277. Zbl0417.44001MR525757
- [14] R.K. Bullough and P.J. Caudrey, eds. Solitons, Topics in Current Physics, t. 17, Berlin, Heidelberg and New York, Springer, 1980. Zbl0428.00010MR625877
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.