An upper bound for the local time-decay of scattering solutions for the Schrödinger equation with Coulomb potential

Hans L. Cycon

Annales de l'I.H.P. Physique théorique (1983)

  • Volume: 39, Issue: 4, page 385-392
  • ISSN: 0246-0211

How to cite

top

Cycon, Hans L.. "An upper bound for the local time-decay of scattering solutions for the Schrödinger equation with Coulomb potential." Annales de l'I.H.P. Physique théorique 39.4 (1983): 385-392. <http://eudml.org/doc/76219>.

@article{Cycon1983,
author = {Cycon, Hans L.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Dollard-wave operator; Coulomb-Schrödinger operator; Hilbert space; large-time decay},
language = {eng},
number = {4},
pages = {385-392},
publisher = {Gauthier-Villars},
title = {An upper bound for the local time-decay of scattering solutions for the Schrödinger equation with Coulomb potential},
url = {http://eudml.org/doc/76219},
volume = {39},
year = {1983},
}

TY - JOUR
AU - Cycon, Hans L.
TI - An upper bound for the local time-decay of scattering solutions for the Schrödinger equation with Coulomb potential
JO - Annales de l'I.H.P. Physique théorique
PY - 1983
PB - Gauthier-Villars
VL - 39
IS - 4
SP - 385
EP - 392
LA - eng
KW - Dollard-wave operator; Coulomb-Schrödinger operator; Hilbert space; large-time decay
UR - http://eudml.org/doc/76219
ER -

References

top
  1. [1] W.O. Amrein, M.J. Jauch, K.B. Sinha, Scattering theory in Quantum Mechanics, Benjamin, Reading, Mass, 1977. Zbl0376.47001MR495999
  2. [2] H.L. Cycon, Absence of singular continuous spectrum for two body Schrödinger operators with long-range potentials (a new proof). Proc. of Roy. Soc. of Edinburgh, t. 94 A, 1983, p. 61-69. Zbl0523.35034MR700499
  3. [3] J.D. Dollard, Quantum mechanical scattering theory for short-range and Coulomb interactions, Rocky Mountain J. of Math., t. 1, n° 1, 1971, p. 5-88. Zbl0226.35074MR270673
  4. [4] A. Jensen, Local decay in time of solutions to Schrödinger's equation with a dilatation–analytic interaction, manuscripta math., t. 25, 1978, p. 61-77. Zbl0397.35056MR492959
  5. [5] A. Jensen, Spectral properties of Schrödinger operators and time-decay of the wave functions; results in L2(Rm), m ≥ 5, Duke Math. J., t. 47, n° 1, 1980, p. 57-80. Zbl0437.47009MR563367
  6. [6] A. Jensen, T. Kato, Spectral properties of Schrödinger operators and time decay of the wave functions, Duke Math. J., t. 46, n° 3, 1979, p. 583-611. Zbl0448.35080MR544248
  7. [7] T. Kato, Perturbation theory for linear operators, Berlin, Heidelberg, New York, Springer, 1966. Zbl0148.12601MR203473
  8. [8] H. Kitada, Time decay of the high energy part of the solutionfor a Schrödinger equation, preprint University of Tokyo, 1982. MR743522
  9. [9] M. Murata, Scattering solutions decay at least logarithmically, Proc. Jap. Ac., t. 54, Ser. A, 1978, p. 42-45. Zbl0395.35022MR486379
  10. [10] J. Rauch, Local decay of Scattering solutions to Schrödinger's equation, Comm. Math. Phys., t. 61, 1978, p. 149-168. Zbl0381.35023MR495958
  11. [11] M. Reed, B. Simon, Methods of modern mathematical physics III, Scattering theory, Acad. press, 1979. Zbl0405.47007MR529429
  12. [12] M. Reed, B. Simon, Methods of modern mathematical physics IV. Analysis of operators, Acad. press, 1978. Zbl0401.47001MR493421

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.