Local decay estimates for Schrödinger operators with long range potentials
Annales de l'I.H.P. Physique théorique (1994)
- Volume: 61, Issue: 2, page 135-151
- ISSN: 0246-0211
Access Full Article
topHow to cite
topOzawa, T.. "Local decay estimates for Schrödinger operators with long range potentials." Annales de l'I.H.P. Physique théorique 61.2 (1994): 135-151. <http://eudml.org/doc/76650>.
@article{Ozawa1994,
author = {Ozawa, T.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {local time-decay of scattering solutions for Schrödinger operators; sharp propagation estimates},
language = {eng},
number = {2},
pages = {135-151},
publisher = {Gauthier-Villars},
title = {Local decay estimates for Schrödinger operators with long range potentials},
url = {http://eudml.org/doc/76650},
volume = {61},
year = {1994},
}
TY - JOUR
AU - Ozawa, T.
TI - Local decay estimates for Schrödinger operators with long range potentials
JO - Annales de l'I.H.P. Physique théorique
PY - 1994
PB - Gauthier-Villars
VL - 61
IS - 2
SP - 135
EP - 151
LA - eng
KW - local time-decay of scattering solutions for Schrödinger operators; sharp propagation estimates
UR - http://eudml.org/doc/76650
ER -
References
top- [1] W.O. Amrein, M.B. Cibils, K.B. Sinha, Configuration space properties of the S-matrix and time delay in potential scattering, Ann. Inst. Henri Poincaré, Physique Théorique, Vol. 47, 1987, pp. 367-382. Zbl0657.35101MR933683
- [2] H.L. Cycon, An upper bound for the local time-decay of scattering solutions for the Schrödinger equation with Coulomb potential, Ann. Inst. Henri Poincaré, Physique Théorique, Vol. 39, 1983, pp. 385-392. Zbl0538.35025MR733689
- [3] H.L. Cycon, P.A. Perry, Local time-decay of high energy scattering states for the Schrödinger equation, Math. Z., Vol. 188, 1984, pp. 125-142. Zbl0538.35026MR767370
- [4] J. Ginibre, T. Ozawa, Long range scattering for non linear Schrödinger and Hartree equations in space dimension n ≥ 2, Commun. Math. Phys., Vol. 151, 1993, pp. 619-645. Zbl0776.35070MR1207269
- [5] N. Hayashi, T. Ozawa, Time decay for some Schrödinger equations, Math. Z., Vol. 200, 1989, pp. 467-483. Zbl0646.35020MR987581
- [6] N. Hayashi, T. Ozawa, Lower bounds for order of decay or of growth in time for solutions to linear and non-linear Schrödinger equations, Publ. RIMS, Kyoto Univ., Vol. 25, 1989, pp. 847-859. Zbl0714.35014MR1045995
- [7] I.W. Herbst, Spectral theory of the operator (p2 + m2)1/2 - Ze2/r, Commun. Math. Phys., Vol. 53, 1977, pp. 285-294. Zbl0375.35047MR436854
- [8] H. Isozaki, Decay rates of scattering states for Schrödinger operators, J. Math. Kyoto Univ., Vol. 26, 1986, pp. 595-603. Zbl0622.35055MR864463
- [9] A. Jensen, Spectral properties of Schrödinger operators and time-decay of the wave functions, Results in L2 (Rm), m ≥ 5, Duke Math. J., Vol. 47, 1980, pp. 57-80. Zbl0437.47009MR563367
- [10] A. Jensen, Propagation estimates for Schrödinger type operators, Trans. Amer. Math. Soc., Vol. 291, 1985, pp. 129-144. Zbl0577.35089MR797050
- [11] A. Jensen, T. Kato, Spectral properties of Schrödinger operators and time-decay of the wave functions, Duke Math. J., Vol. 46, 1979, pp. 583-611. Zbl0448.35080MR544248
- [12] A. Jensen, E. Mourre, P. Perry, Multiple commutator estimates and resolvent smoothness in quantum scattering theory, Ann. Inst. Henri Poincaré, Physique Théorique, Vol. 41, 1984, pp. 207-225. Zbl0561.47007MR769156
- [13] A. Jensen, S. Nakamura, Mapping properties of wave and scattering operators for two-body Schrödinger operators, Letters in Math. Phys., Vol. 24, 1992, pp. 295-305. Zbl0761.35074MR1172457
- [14] A. Mohapatra, K.B. Sinha, W.O. Amrein, Configuration space properties of the scattering operator and time delay for potentials decaying like |x|-α, α > 1, Ann. Inst. Henri Poincaré, Physique Théorique, Vol. 57, 1992, pp. 89-113. Zbl0776.35043MR1176359
- [15] M. Murata, Asymptotic expansions in time for solutions of Schrödinger type equations, J. Funct. Anal., Vol. 49, 1982, pp. 10-56. Zbl0499.35019MR680855
- [16] T. Ozawa, Long range scattering for nonlinear Schrödinger equations in one space dimension, Commun. Math. Phys., Vol. 139, 1991, pp. 479-493. Zbl0742.35043MR1121130
- [17] P. Perry, Scattering theory by the Enss method, Math. Reports, Vol. 1, 1983, pp. 1-347. Zbl0529.35004MR752694
- [18] M. Reed, B. Simon, Methods of Modern Mathematical Physics III. Scattering Theory, Academic Press, New York, 1979. Zbl0405.47007MR529429
- [19] D.R. Yafaev, Spectral properties of the Schrödinger operator with a potential having a slow falloff, Funct. Anal. Appl., Vol. 16, 1982, pp. 280-286. Zbl0518.47032MR684126
- [20] D.R. Yafaev, The low energy scattering for slowly decreasing potentials, Commun. Math. Phys., Vol. 85, 1982, pp. 177-196. Zbl0509.35065MR675998
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.