Local decay estimates for Schrödinger operators with long range potentials

T. Ozawa

Annales de l'I.H.P. Physique théorique (1994)

  • Volume: 61, Issue: 2, page 135-151
  • ISSN: 0246-0211

How to cite

top

Ozawa, T.. "Local decay estimates for Schrödinger operators with long range potentials." Annales de l'I.H.P. Physique théorique 61.2 (1994): 135-151. <http://eudml.org/doc/76650>.

@article{Ozawa1994,
author = {Ozawa, T.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {local time-decay of scattering solutions for Schrödinger operators; sharp propagation estimates},
language = {eng},
number = {2},
pages = {135-151},
publisher = {Gauthier-Villars},
title = {Local decay estimates for Schrödinger operators with long range potentials},
url = {http://eudml.org/doc/76650},
volume = {61},
year = {1994},
}

TY - JOUR
AU - Ozawa, T.
TI - Local decay estimates for Schrödinger operators with long range potentials
JO - Annales de l'I.H.P. Physique théorique
PY - 1994
PB - Gauthier-Villars
VL - 61
IS - 2
SP - 135
EP - 151
LA - eng
KW - local time-decay of scattering solutions for Schrödinger operators; sharp propagation estimates
UR - http://eudml.org/doc/76650
ER -

References

top
  1. [1] W.O. Amrein, M.B. Cibils, K.B. Sinha, Configuration space properties of the S-matrix and time delay in potential scattering, Ann. Inst. Henri Poincaré, Physique Théorique, Vol. 47, 1987, pp. 367-382. Zbl0657.35101MR933683
  2. [2] H.L. Cycon, An upper bound for the local time-decay of scattering solutions for the Schrödinger equation with Coulomb potential, Ann. Inst. Henri Poincaré, Physique Théorique, Vol. 39, 1983, pp. 385-392. Zbl0538.35025MR733689
  3. [3] H.L. Cycon, P.A. Perry, Local time-decay of high energy scattering states for the Schrödinger equation, Math. Z., Vol. 188, 1984, pp. 125-142. Zbl0538.35026MR767370
  4. [4] J. Ginibre, T. Ozawa, Long range scattering for non linear Schrödinger and Hartree equations in space dimension n ≥ 2, Commun. Math. Phys., Vol. 151, 1993, pp. 619-645. Zbl0776.35070MR1207269
  5. [5] N. Hayashi, T. Ozawa, Time decay for some Schrödinger equations, Math. Z., Vol. 200, 1989, pp. 467-483. Zbl0646.35020MR987581
  6. [6] N. Hayashi, T. Ozawa, Lower bounds for order of decay or of growth in time for solutions to linear and non-linear Schrödinger equations, Publ. RIMS, Kyoto Univ., Vol. 25, 1989, pp. 847-859. Zbl0714.35014MR1045995
  7. [7] I.W. Herbst, Spectral theory of the operator (p2 + m2)1/2 - Ze2/r, Commun. Math. Phys., Vol. 53, 1977, pp. 285-294. Zbl0375.35047MR436854
  8. [8] H. Isozaki, Decay rates of scattering states for Schrödinger operators, J. Math. Kyoto Univ., Vol. 26, 1986, pp. 595-603. Zbl0622.35055MR864463
  9. [9] A. Jensen, Spectral properties of Schrödinger operators and time-decay of the wave functions, Results in L2 (Rm), m ≥ 5, Duke Math. J., Vol. 47, 1980, pp. 57-80. Zbl0437.47009MR563367
  10. [10] A. Jensen, Propagation estimates for Schrödinger type operators, Trans. Amer. Math. Soc., Vol. 291, 1985, pp. 129-144. Zbl0577.35089MR797050
  11. [11] A. Jensen, T. Kato, Spectral properties of Schrödinger operators and time-decay of the wave functions, Duke Math. J., Vol. 46, 1979, pp. 583-611. Zbl0448.35080MR544248
  12. [12] A. Jensen, E. Mourre, P. Perry, Multiple commutator estimates and resolvent smoothness in quantum scattering theory, Ann. Inst. Henri Poincaré, Physique Théorique, Vol. 41, 1984, pp. 207-225. Zbl0561.47007MR769156
  13. [13] A. Jensen, S. Nakamura, Mapping properties of wave and scattering operators for two-body Schrödinger operators, Letters in Math. Phys., Vol. 24, 1992, pp. 295-305. Zbl0761.35074MR1172457
  14. [14] A. Mohapatra, K.B. Sinha, W.O. Amrein, Configuration space properties of the scattering operator and time delay for potentials decaying like |x|-α, α &gt; 1, Ann. Inst. Henri Poincaré, Physique Théorique, Vol. 57, 1992, pp. 89-113. Zbl0776.35043MR1176359
  15. [15] M. Murata, Asymptotic expansions in time for solutions of Schrödinger type equations, J. Funct. Anal., Vol. 49, 1982, pp. 10-56. Zbl0499.35019MR680855
  16. [16] T. Ozawa, Long range scattering for nonlinear Schrödinger equations in one space dimension, Commun. Math. Phys., Vol. 139, 1991, pp. 479-493. Zbl0742.35043MR1121130
  17. [17] P. Perry, Scattering theory by the Enss method, Math. Reports, Vol. 1, 1983, pp. 1-347. Zbl0529.35004MR752694
  18. [18] M. Reed, B. Simon, Methods of Modern Mathematical Physics III. Scattering Theory, Academic Press, New York, 1979. Zbl0405.47007MR529429
  19. [19] D.R. Yafaev, Spectral properties of the Schrödinger operator with a potential having a slow falloff, Funct. Anal. Appl., Vol. 16, 1982, pp. 280-286. Zbl0518.47032MR684126
  20. [20] D.R. Yafaev, The low energy scattering for slowly decreasing potentials, Commun. Math. Phys., Vol. 85, 1982, pp. 177-196. Zbl0509.35065MR675998

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.