Multiple tunnelings in d-dimensions : a quantum particle in a hierarchical potential

G. Jona-Lasinio; F. Martinelli; E. Scoppola

Annales de l'I.H.P. Physique théorique (1985)

  • Volume: 42, Issue: 1, page 73-108
  • ISSN: 0246-0211

How to cite

top

Jona-Lasinio, G., Martinelli, F., and Scoppola, E.. "Multiple tunnelings in d-dimensions : a quantum particle in a hierarchical potential." Annales de l'I.H.P. Physique théorique 42.1 (1985): 73-108. <http://eudml.org/doc/76275>.

@article{Jona1985,
author = {Jona-Lasinio, G., Martinelli, F., Scoppola, E.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Schrödinger equation; tunneling; quantum evolution; spectral properties of the Hamiltonian; random perturbation},
language = {eng},
number = {1},
pages = {73-108},
publisher = {Gauthier-Villars},
title = {Multiple tunnelings in d-dimensions : a quantum particle in a hierarchical potential},
url = {http://eudml.org/doc/76275},
volume = {42},
year = {1985},
}

TY - JOUR
AU - Jona-Lasinio, G.
AU - Martinelli, F.
AU - Scoppola, E.
TI - Multiple tunnelings in d-dimensions : a quantum particle in a hierarchical potential
JO - Annales de l'I.H.P. Physique théorique
PY - 1985
PB - Gauthier-Villars
VL - 42
IS - 1
SP - 73
EP - 108
LA - eng
KW - Schrödinger equation; tunneling; quantum evolution; spectral properties of the Hamiltonian; random perturbation
UR - http://eudml.org/doc/76275
ER -

References

top
  1. [1] G. Jona-Lasinio, F. Martinelli, E. Scoppola, Quantum Particle in a hierarchical potential with tunneling over arbitrarily large scales. Preprint Université Paris VI. PAR LPTHE 84/09. March 1984. To appear in J. Phys. A : Math. and Gen. Zbl1188.81106MR763617
  2. [2] G. Jona-Lasinio, F. Martinelli, E. Scoppola, New Approach to the Semiclassical Limit of Quantum Mechanics. I. Multiple tunneling in one dimension. Comm. Math. Phys., t. 80, 1981, p. 223-254. G. Jona-Lasinio, F. Martinelli, E. Scoppola, The Semiclassical Limit of Quantum Mechanics: a qualitative theory via Stochastic Mechanics. Phys. Rep., t. 77, n° 3, 1981, p. 313-327. A different approach to the same kind of problems has been developed recently by B. Helffer and J. Sjöstrand, Multiple Wells in the Semiclassical Limit. I. To appear in CPDE. Puits Multiples en Limite Semiclassique. II. Preprint 1984. See also: S. Graffi, V. Grecchi, G. Jona-Lasinio, Tunneling Instability via Perturbation Theory, to appear in J. Phys. A. Zbl0483.60094MR623159
  3. [3] G. Jona-Lasinio, F. Martinelli, E. Scoppola, paper in preparation. 
  4. [4] D.B. Pearson, Singular Continuous Measures in Scattering Theory, Comm. Math. Phys., t. 60, 1978, p. 13-36. Zbl0451.47013MR484145
  5. [5] J. Fröhlich, T. Spencer, Absence of diffusion in the Anderson tight binding model for large disorder or low energy. Comm. Math. Phys., t. 88, 1983, p. 151-184. J. Fröhlich, T. Spencer, A rigorous approach to Anderson localization, Phys. Reports, t. 108, n° 1-4, 1984, p. 9. Zbl0519.60066MR696803
  6. [6] H. Kunz, B. Souillard, Sur le spectre des opérateurs aux différences finies aléatoires. Comm. Math. Phys., t. 78, 1980, p. 201-246. Zbl0449.60048MR597748
  7. [7] H. Holden, F. Martinelli, On absence of Diffusion near the Bottom of the Spectrum for a random Schrödinger Operator on L2 (Rν). Comm. Math. Phys., t. 93, 1984, p. 197-217. Zbl0546.60063MR742193
  8. [8] B. Simon, Schrödinger Semigroups. Bull. Amer. Math. Soc., t. 7, 1983, p. 447. Zbl0524.35002MR670130
  9. [9] M. Reed, B. Simon, Methods of Modern Mathematical Physics, IV. Academic Press, 1975-1978. Zbl0401.47001MR751959
  10. [10] B. Simon, Functional integration and Quantum Physics. Academic Press, New York, 1979. Zbl0434.28013MR544188
  11. [11] F. Wegner, Bounds on the density of states in disordered systems. Z. Physik, t. B44, 1981, p. 9-15. MR639135
  12. [12] Ju.M. Berezanskii, Expansion in eigenfunctions of selfadjoint operators. Translations of Mathematical Monographs, t. 17, A. M. S., 1968. Zbl0157.16601MR222718

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.