Semi-classical eigenstates at the bottom of a multidimensional well

T. F. Pankratova

Annales de l'I.H.P. Physique théorique (1995)

  • Volume: 62, Issue: 4, page 361-382
  • ISSN: 0246-0211

How to cite

top

Pankratova, T. F.. "Semi-classical eigenstates at the bottom of a multidimensional well." Annales de l'I.H.P. Physique théorique 62.4 (1995): 361-382. <http://eudml.org/doc/76679>.

@article{Pankratova1995,
author = {Pankratova, T. F.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Schrödinger equation; analytic potential; nondegenerated minimum; Gaussian-like asymptotics},
language = {eng},
number = {4},
pages = {361-382},
publisher = {Gauthier-Villars},
title = {Semi-classical eigenstates at the bottom of a multidimensional well},
url = {http://eudml.org/doc/76679},
volume = {62},
year = {1995},
}

TY - JOUR
AU - Pankratova, T. F.
TI - Semi-classical eigenstates at the bottom of a multidimensional well
JO - Annales de l'I.H.P. Physique théorique
PY - 1995
PB - Gauthier-Villars
VL - 62
IS - 4
SP - 361
EP - 382
LA - eng
KW - Schrödinger equation; analytic potential; nondegenerated minimum; Gaussian-like asymptotics
UR - http://eudml.org/doc/76679
ER -

References

top
  1. [1] M.V. Fedoryuk, Asymptotics of the Point Spectrum of the Operator W'' + λ2p(x) W, Mat. Sb., Vol. 68, (110), 1965, pp. 81-110 (Russian). 
  2. [2] S.Yu. Slavyanov, Asymptotics of Singular Sturm-Liuville Problems with Respect to a Large Parameter in the Case of Close Transition Points, Differentsial'nye Uravneniya, Vol. 5, 1969, pp. 313-325, English transl. in Differential Equations, Vol. 5, 1969. MR245921
  3. [3] A.G. Alenitsyn, The Spectrum Splitting Generated by a Potential Barrier in Problems with a Symmetrical Potential, Differentsial'nye Uravneniya, Vol. 18, 1982, pp. 1971-1975, English transl. in Differential Equations, Vol. 18, 1982. Zbl0522.34020MR681980
  4. [4] B. Simon, Semiclassical Analysis of Low Lying Eigenvalues, I. Non-Degenerate Minima: Asymptotic Expansions, Ann. Inst. Henry Poincaré, Vol. 38, 1983, pp. 295-307. Zbl0526.35027MR708966
  5. [5] B. Simon, Semiclassical Analysis of Low Lying Eigenvalues, II. Tunneling, Ann. Math., Vol. 120, 1984, pp. 89-118. Zbl0626.35070MR750717
  6. [6] V.P. Maslov, The Complex WKB-Method in Nonlinear Equations, Nauka, Moscow, 1981 (Russian). Zbl0449.58001
  7. [7] G. Jona-Lasinio, F. Martinelli and E. Scoppola, New Approach to the Semiclassical Limit of Quantum Mechanics, Comm. Math. Phys., Vol. 80, 1981, pp. 223-254. Zbl0483.60094MR623159
  8. [8] E.M. Harrel, Double Wells, Comm. Math. Phys., Vol. 75, 1980, pp. 239-261. Zbl0445.35036MR581948
  9. [9] T.F. Pankratova, Quasimodes and Splitting of Eigenvalues, Soviet Math. Dokl., Vol. 29, 1984, pp. 597-601. Zbl0592.34012MR754093
  10. [10] E. Delabaere and H. Dillinger, Contribution à la resurgence quantique, Thèse de doctorat de Math., Université de Nice-Sophia-Antipolis. Zbl0712.35071
  11. [11] B. Helffer and J. Sjöstrand, Multiple Wells in the Semi-Classical Limit I, Comm. in Partial Differential Equations, Vol. 9, 1984, pp. 337-408. Zbl0546.35053MR740094
  12. [12] B. Helffer and J. Sjöstrand, Puits Multiples en Limite Semi-Classical II. Interaction moléculaire. Symétries. Perturbation, Ann. Inst. Henry Poincaré, Vol. 42, 1985, pp. 127- 212. Zbl0595.35031MR798695
  13. [13] B. Helffer and J. Sjöstrand, Multiple Wells in the Semi-Classical Limit III. Interaction Through Non-Resonant Wells, Math. Nachr., Vol. 124, 1985, pp. 263-313. Zbl0597.35023
  14. [14] G. Jona-Lasinio, F. Martinelli and E. Scoppola, Multiple Tunneling in d-Dimensions: a Quantum Particle in a Hierarchical Potential, Ann. Inst. Henry Poincaré, Vol. 42, 1985, pp. 73-108. Zbl0586.35030MR794366
  15. [15] S. Yu Slavyanov and N.A. Veshev, The Quantization of Lower States of an Unharmonic Oscillator with Methods of the Classical Dynamics., Problemy Matfiziki, vyp13, 1991 (Russian). 
  16. [16] S. Graffi and T. Paul, The Schrödinger Equation and Canonical Perturbation Theory, Comm. Math. Phys., Vol. 108, 1987, pp. 25-40. Zbl0622.35071MR872139
  17. [17] J. Bellissard and M. Vittot, Heisenberg's Picture and Noncommutative Geometry of the Semiclassical Limit in Quantum Mechanics, Ann. Inst. Henry Poincaré, Vol. 52, 1990, pp. 175-235. Zbl0705.46037MR1057445
  18. [18] S.Yu. Dobrokhotov, V.N. Kolokoltsov and V.P. Maslov, The Splitting of the Low Lying Energy Levels of the Schrödinger Operator and the Asymptotics of the Fundamental Solution of the Equation hut = (h2Δ/2 - V (x))u with a Symmetric Potential, Teoret. Mat. Fiz., Vol. 87, 1991, pp. 323-375, English transl. in Theoret. and Math. Phys., Vol. 87, 1991. Zbl0745.35033MR1129671
  19. [19] S.Yu. Dobrokhotov, V.N. Kolokoltsov and V.P. Maslov, Quantization of the Bellman Equation. Exponential Asymptotics and Tunneling, Advances in Soviet Mathematics, Vol. 13, 1992, pp. 1-46. Zbl0796.35141MR1203783
  20. [20] S.Yu. Dobrokhotov and V.N. Kolokoltsov, Splitting Amplitudes of the Lowest Energy Levels of the Schrödinger Operator with Double well Potential, Teoret. Mat. Fiz., Vol. 94, 1993, pp. 346-434, English transl. in Theoret. and Math. Phys., Vol. 94, 1993. Zbl0799.35050MR1226223
  21. [21] V.I. Arnol'd, Modes and Quasi-Modes, Functional. Anal. i. Prilozhen, Vol. 6, 1972, pp. 12-20, English transl. in Functional Anal. Appl., Vol. 6, 1972 (Russian). Zbl0251.70012
  22. [22] V.I. Arnol'd, Mathematical Methods in Classical Mechanics, Nauka, Moscow, 1989, (Russian). Zbl0692.70003MR1037020
  23. [23] V.I. Arnol'd, V.V. Kozlov and A.I. Neishtadt, Dynamical Systems-3. Mathematical Aspects in Classical and Celestial Mechanics, Itogi Nauki i Tekhnik. Modern Problems in Mathematics. Fundamental Orientations, Viniti ANSSSR Eds., Vol. 3, Moscow, 1985 (Russian). Zbl0674.70003
  24. [24] J. Williamson, On the Algebraic Problem Concerning the Normal Forms of Linear Dynamical Systems, Amer. J. Math., Vol. 58, 1936, pp. 141-163. Zbl0013.28401MR1507138JFM62.1795.10
  25. [25] J. Williamson, The Exponential Representation of Canonical Matrices, Amer. J. Math., Vol. 61, 1939, pp. 897-911. Zbl0022.10007MR220
  26. [26] J. Sjöstrand, Analytic Wavefront Sets and Operators with Multiple Characteristics, Hokkaido Math. J., Vol. 12, 1983, pp. 392-433. Zbl0531.35022MR725588
  27. [27] Nguyên Hu'u Du'c and F. Pham, Germes de configurations legendriennes stables et functions d'Airy-Weber generalisees, Annales de l'Institut Fourier, Grenoble, Vol. 41, 1991, pp. 905-936. Zbl0741.58048MR1150572
  28. [28] L.V. Yantorovich and G.P. Akilov, Functional Analysis, Nauka, 2nd rev., Moscow, 1977, English transl., Pergamon Press, 1982. Zbl0484.46003MR664597

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.