Semi-classical eigenstates at the bottom of a multidimensional well
Annales de l'I.H.P. Physique théorique (1995)
- Volume: 62, Issue: 4, page 361-382
- ISSN: 0246-0211
Access Full Article
topHow to cite
topPankratova, T. F.. "Semi-classical eigenstates at the bottom of a multidimensional well." Annales de l'I.H.P. Physique théorique 62.4 (1995): 361-382. <http://eudml.org/doc/76679>.
@article{Pankratova1995,
author = {Pankratova, T. F.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Schrödinger equation; analytic potential; nondegenerated minimum; Gaussian-like asymptotics},
language = {eng},
number = {4},
pages = {361-382},
publisher = {Gauthier-Villars},
title = {Semi-classical eigenstates at the bottom of a multidimensional well},
url = {http://eudml.org/doc/76679},
volume = {62},
year = {1995},
}
TY - JOUR
AU - Pankratova, T. F.
TI - Semi-classical eigenstates at the bottom of a multidimensional well
JO - Annales de l'I.H.P. Physique théorique
PY - 1995
PB - Gauthier-Villars
VL - 62
IS - 4
SP - 361
EP - 382
LA - eng
KW - Schrödinger equation; analytic potential; nondegenerated minimum; Gaussian-like asymptotics
UR - http://eudml.org/doc/76679
ER -
References
top- [1] M.V. Fedoryuk, Asymptotics of the Point Spectrum of the Operator W'' + λ2p(x) W, Mat. Sb., Vol. 68, (110), 1965, pp. 81-110 (Russian).
- [2] S.Yu. Slavyanov, Asymptotics of Singular Sturm-Liuville Problems with Respect to a Large Parameter in the Case of Close Transition Points, Differentsial'nye Uravneniya, Vol. 5, 1969, pp. 313-325, English transl. in Differential Equations, Vol. 5, 1969. MR245921
- [3] A.G. Alenitsyn, The Spectrum Splitting Generated by a Potential Barrier in Problems with a Symmetrical Potential, Differentsial'nye Uravneniya, Vol. 18, 1982, pp. 1971-1975, English transl. in Differential Equations, Vol. 18, 1982. Zbl0522.34020MR681980
- [4] B. Simon, Semiclassical Analysis of Low Lying Eigenvalues, I. Non-Degenerate Minima: Asymptotic Expansions, Ann. Inst. Henry Poincaré, Vol. 38, 1983, pp. 295-307. Zbl0526.35027MR708966
- [5] B. Simon, Semiclassical Analysis of Low Lying Eigenvalues, II. Tunneling, Ann. Math., Vol. 120, 1984, pp. 89-118. Zbl0626.35070MR750717
- [6] V.P. Maslov, The Complex WKB-Method in Nonlinear Equations, Nauka, Moscow, 1981 (Russian). Zbl0449.58001
- [7] G. Jona-Lasinio, F. Martinelli and E. Scoppola, New Approach to the Semiclassical Limit of Quantum Mechanics, Comm. Math. Phys., Vol. 80, 1981, pp. 223-254. Zbl0483.60094MR623159
- [8] E.M. Harrel, Double Wells, Comm. Math. Phys., Vol. 75, 1980, pp. 239-261. Zbl0445.35036MR581948
- [9] T.F. Pankratova, Quasimodes and Splitting of Eigenvalues, Soviet Math. Dokl., Vol. 29, 1984, pp. 597-601. Zbl0592.34012MR754093
- [10] E. Delabaere and H. Dillinger, Contribution à la resurgence quantique, Thèse de doctorat de Math., Université de Nice-Sophia-Antipolis. Zbl0712.35071
- [11] B. Helffer and J. Sjöstrand, Multiple Wells in the Semi-Classical Limit I, Comm. in Partial Differential Equations, Vol. 9, 1984, pp. 337-408. Zbl0546.35053MR740094
- [12] B. Helffer and J. Sjöstrand, Puits Multiples en Limite Semi-Classical II. Interaction moléculaire. Symétries. Perturbation, Ann. Inst. Henry Poincaré, Vol. 42, 1985, pp. 127- 212. Zbl0595.35031MR798695
- [13] B. Helffer and J. Sjöstrand, Multiple Wells in the Semi-Classical Limit III. Interaction Through Non-Resonant Wells, Math. Nachr., Vol. 124, 1985, pp. 263-313. Zbl0597.35023
- [14] G. Jona-Lasinio, F. Martinelli and E. Scoppola, Multiple Tunneling in d-Dimensions: a Quantum Particle in a Hierarchical Potential, Ann. Inst. Henry Poincaré, Vol. 42, 1985, pp. 73-108. Zbl0586.35030MR794366
- [15] S. Yu Slavyanov and N.A. Veshev, The Quantization of Lower States of an Unharmonic Oscillator with Methods of the Classical Dynamics., Problemy Matfiziki, vyp13, 1991 (Russian).
- [16] S. Graffi and T. Paul, The Schrödinger Equation and Canonical Perturbation Theory, Comm. Math. Phys., Vol. 108, 1987, pp. 25-40. Zbl0622.35071MR872139
- [17] J. Bellissard and M. Vittot, Heisenberg's Picture and Noncommutative Geometry of the Semiclassical Limit in Quantum Mechanics, Ann. Inst. Henry Poincaré, Vol. 52, 1990, pp. 175-235. Zbl0705.46037MR1057445
- [18] S.Yu. Dobrokhotov, V.N. Kolokoltsov and V.P. Maslov, The Splitting of the Low Lying Energy Levels of the Schrödinger Operator and the Asymptotics of the Fundamental Solution of the Equation hut = (h2Δ/2 - V (x))u with a Symmetric Potential, Teoret. Mat. Fiz., Vol. 87, 1991, pp. 323-375, English transl. in Theoret. and Math. Phys., Vol. 87, 1991. Zbl0745.35033MR1129671
- [19] S.Yu. Dobrokhotov, V.N. Kolokoltsov and V.P. Maslov, Quantization of the Bellman Equation. Exponential Asymptotics and Tunneling, Advances in Soviet Mathematics, Vol. 13, 1992, pp. 1-46. Zbl0796.35141MR1203783
- [20] S.Yu. Dobrokhotov and V.N. Kolokoltsov, Splitting Amplitudes of the Lowest Energy Levels of the Schrödinger Operator with Double well Potential, Teoret. Mat. Fiz., Vol. 94, 1993, pp. 346-434, English transl. in Theoret. and Math. Phys., Vol. 94, 1993. Zbl0799.35050MR1226223
- [21] V.I. Arnol'd, Modes and Quasi-Modes, Functional. Anal. i. Prilozhen, Vol. 6, 1972, pp. 12-20, English transl. in Functional Anal. Appl., Vol. 6, 1972 (Russian). Zbl0251.70012
- [22] V.I. Arnol'd, Mathematical Methods in Classical Mechanics, Nauka, Moscow, 1989, (Russian). Zbl0692.70003MR1037020
- [23] V.I. Arnol'd, V.V. Kozlov and A.I. Neishtadt, Dynamical Systems-3. Mathematical Aspects in Classical and Celestial Mechanics, Itogi Nauki i Tekhnik. Modern Problems in Mathematics. Fundamental Orientations, Viniti ANSSSR Eds., Vol. 3, Moscow, 1985 (Russian). Zbl0674.70003
- [24] J. Williamson, On the Algebraic Problem Concerning the Normal Forms of Linear Dynamical Systems, Amer. J. Math., Vol. 58, 1936, pp. 141-163. Zbl0013.28401MR1507138JFM62.1795.10
- [25] J. Williamson, The Exponential Representation of Canonical Matrices, Amer. J. Math., Vol. 61, 1939, pp. 897-911. Zbl0022.10007MR220
- [26] J. Sjöstrand, Analytic Wavefront Sets and Operators with Multiple Characteristics, Hokkaido Math. J., Vol. 12, 1983, pp. 392-433. Zbl0531.35022MR725588
- [27] Nguyên Hu'u Du'c and F. Pham, Germes de configurations legendriennes stables et functions d'Airy-Weber generalisees, Annales de l'Institut Fourier, Grenoble, Vol. 41, 1991, pp. 905-936. Zbl0741.58048MR1150572
- [28] L.V. Yantorovich and G.P. Akilov, Functional Analysis, Nauka, 2nd rev., Moscow, 1977, English transl., Pergamon Press, 1982. Zbl0484.46003MR664597
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.