Pointwise bounds on the asymptotics of spherically averaged L 2 -solutions of one-body Schrödinger equations

M. Hoffmann-Ostenhof; T. Hoffmann-Ostenhof; Jörg Swetina

Annales de l'I.H.P. Physique théorique (1985)

  • Volume: 42, Issue: 4, page 341-361
  • ISSN: 0246-0211

How to cite

top

Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T., and Swetina, Jörg. "Pointwise bounds on the asymptotics of spherically averaged $L^2$-solutions of one-body Schrödinger equations." Annales de l'I.H.P. Physique théorique 42.4 (1985): 341-361. <http://eudml.org/doc/76286>.

@article{Hoffmann1985,
author = {Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T., Swetina, Jörg},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {one-body Schrödinger equations},
language = {eng},
number = {4},
pages = {341-361},
publisher = {Gauthier-Villars},
title = {Pointwise bounds on the asymptotics of spherically averaged $L^2$-solutions of one-body Schrödinger equations},
url = {http://eudml.org/doc/76286},
volume = {42},
year = {1985},
}

TY - JOUR
AU - Hoffmann-Ostenhof, M.
AU - Hoffmann-Ostenhof, T.
AU - Swetina, Jörg
TI - Pointwise bounds on the asymptotics of spherically averaged $L^2$-solutions of one-body Schrödinger equations
JO - Annales de l'I.H.P. Physique théorique
PY - 1985
PB - Gauthier-Villars
VL - 42
IS - 4
SP - 341
EP - 361
LA - eng
KW - one-body Schrödinger equations
UR - http://eudml.org/doc/76286
ER -

References

top
  1. [1] S. Agmon, Lectures on exponential decay of solutions of second order elliptic equations. Bounds on eigenfunctions of N-body Schrödinger operators, Mathematical Notes, Princeton University Press, Princeton N. J., 1982. Zbl0503.35001MR745286
  2. [2] B. Simon, Schrödinger semigroups, Bull. Am. Math. Soc., t. 7, 1982, p. 447-526. Zbl0524.35002MR670130
  3. [3] R. Carmona, B. Simon, Pointwise bounds on eigenfunctions and wave packets in N-body quantum systems V: Lower bounds and path integrals, Commun. Math. Phys., t. 80, 1981, p. 59-98. Zbl0464.35085MR623152
  4. [4] R. Froese and I. Herbst, Exponential bounds on eigenfunctions and absence of positive eigenvalues for N-body Schrödinger operators, Commun. Math. Phys., t. 87, 1982, p. 429-447. Zbl0509.35061MR682117
  5. [5] R. Froese, I. Herbst, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, L2-exponential lower bounds to solutions of the Schrödinger equations, Commun. Math. Phys., t. 87, 1982, p. 265-286. Zbl0514.35024MR684104
  6. [6] C. Bardos and M. Merigot, Asymptotic decay of solutions of a second order elliptic equation in an unbounded domain. Application to the spectral properties of a Hamiltonian, Proc. Roy. Soc. Edinburgh Sect., t. A 76, 1977, p. 323-344. Zbl0351.35009MR477432
  7. [7] R. Froese, I. Herbst, Exponential lower bounds to solutions of the Schrödinger equation: lower bounds for the spherical average, Commun. Math. Phys., t. 92, 1983, p. 71-80. Zbl0556.35031MR728448
  8. [8] B. Simon, Pointwise bounds on eigenfunctions and wave packets in N-body quantum systems III, Trans. Amer. Math. Soc., t. 208, 1975, p. 317-329. Zbl0305.35078MR417597
  9. [9] T. Hoffmann-Ostenhof, A comparison theorem for differential inequalities with applications in quantum mechanics, J. Phys., t. A 13, 1980, p. 417-424. Zbl0432.35080MR558638
  10. [10] E.B. Davies, JWKB and related bounds on Schrödinger eigenfunctions, Bull. London Math. Soc., t. 14, 1982, p. 273-284. Zbl0525.35026MR663479
  11. [11] R. Ahlrichs, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, J. Morgan, Bounds on the decay of electron densities with screening, Phys. Rev., t. A 23, 1981, p. 2106-2116. Zbl0446.35017MR611815
  12. [12] R. Froese, I. Herbst, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, L2-lower bounds to solutions of one-body Schrödinger equations, Proc. Roy. Soc. Edinburgh, t. 95 A, 1983, p. 25-38. Zbl0547.35038MR723095
  13. [13] W.O. Amrein, A.M. Berthier, V. Georgescu, Lower bounds for zero energy eigen–functions of Schrödinger operators. Helv. Phys. Acta, t. 57, 1984, p. 301-306. Zbl0618.35086MR762143
  14. [14] M. Reed, B. Simon, Methods of modern mathematical physics IV. Analysis of operators, Academic Press, New York, 1978. Zbl0401.47001MR493421
  15. [15] W.O. Amrein, A.M. Berthier, V. Georgescu, Lp-inequalities for the Laplacian and unique continuation, Ann. Inst. Fourier, t. 31, 1981, p. 153-168. Zbl0468.35017MR638622
  16. [16] L. Hörmander, Uniqueness theorems for second order elliptic differential equations, Commun. P. D. E., t. 8, 1983, p. 21-63. Zbl0546.35023MR686819
  17. [17] M. Aizenman, B. Simon, Brownian motion and Harnack's inequality for Schrödinger operators, Comm. Pure, Appl. Math., t. 35, 1982, p. 209-271. Zbl0459.60069MR644024
  18. [18] M. Abramowitz, I.A. Stegun, Handbook of mathematical functions, Dover, New York, 1968. 
  19. [19] H.D. Block, A class of inequalities, Proc. Amer. Soc., t. 8, 1957, p. 844-851. Zbl0081.05104MR92830
  20. [20] M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, Anzeiger der Österr. Akad. d. Wiss., t. 8, 1976, p. 91-95, Zbl0351.26023
  21. [21] T. Kato, Perturbation theory for linear operators, SpringerNew York, 1976, 2nd ed. Zbl0342.47009MR407617
  22. [22] C.B. Morrey, Multiple integrals in the calculus of variations, SpringerNew York, 1966. Zbl0142.38701MR202511
  23. [23] M. Reed, B. Simon, Methods of mathematical physics II, Fourier analysis, selfadjointness, Academic Press, New York, 1975. Zbl0308.47002
  24. [24] M. Hoffman-Ostenhof, T. Hoffmann-Ostenhof, Schrödinger inequalities and asymptotic behaviour of the one density of atoms and molecules, Phys. Rev., t. A 16, 1977, p. 1782-1785. MR471726

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.