Pointwise bounds on the asymptotics of spherically averaged -solutions of one-body Schrödinger equations
M. Hoffmann-Ostenhof; T. Hoffmann-Ostenhof; Jörg Swetina
Annales de l'I.H.P. Physique théorique (1985)
- Volume: 42, Issue: 4, page 341-361
- ISSN: 0246-0211
Access Full Article
topHow to cite
topHoffmann-Ostenhof, M., Hoffmann-Ostenhof, T., and Swetina, Jörg. "Pointwise bounds on the asymptotics of spherically averaged $L^2$-solutions of one-body Schrödinger equations." Annales de l'I.H.P. Physique théorique 42.4 (1985): 341-361. <http://eudml.org/doc/76286>.
@article{Hoffmann1985,
author = {Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T., Swetina, Jörg},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {one-body Schrödinger equations},
language = {eng},
number = {4},
pages = {341-361},
publisher = {Gauthier-Villars},
title = {Pointwise bounds on the asymptotics of spherically averaged $L^2$-solutions of one-body Schrödinger equations},
url = {http://eudml.org/doc/76286},
volume = {42},
year = {1985},
}
TY - JOUR
AU - Hoffmann-Ostenhof, M.
AU - Hoffmann-Ostenhof, T.
AU - Swetina, Jörg
TI - Pointwise bounds on the asymptotics of spherically averaged $L^2$-solutions of one-body Schrödinger equations
JO - Annales de l'I.H.P. Physique théorique
PY - 1985
PB - Gauthier-Villars
VL - 42
IS - 4
SP - 341
EP - 361
LA - eng
KW - one-body Schrödinger equations
UR - http://eudml.org/doc/76286
ER -
References
top- [1] S. Agmon, Lectures on exponential decay of solutions of second order elliptic equations. Bounds on eigenfunctions of N-body Schrödinger operators, Mathematical Notes, Princeton University Press, Princeton N. J., 1982. Zbl0503.35001MR745286
- [2] B. Simon, Schrödinger semigroups, Bull. Am. Math. Soc., t. 7, 1982, p. 447-526. Zbl0524.35002MR670130
- [3] R. Carmona, B. Simon, Pointwise bounds on eigenfunctions and wave packets in N-body quantum systems V: Lower bounds and path integrals, Commun. Math. Phys., t. 80, 1981, p. 59-98. Zbl0464.35085MR623152
- [4] R. Froese and I. Herbst, Exponential bounds on eigenfunctions and absence of positive eigenvalues for N-body Schrödinger operators, Commun. Math. Phys., t. 87, 1982, p. 429-447. Zbl0509.35061MR682117
- [5] R. Froese, I. Herbst, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, L2-exponential lower bounds to solutions of the Schrödinger equations, Commun. Math. Phys., t. 87, 1982, p. 265-286. Zbl0514.35024MR684104
- [6] C. Bardos and M. Merigot, Asymptotic decay of solutions of a second order elliptic equation in an unbounded domain. Application to the spectral properties of a Hamiltonian, Proc. Roy. Soc. Edinburgh Sect., t. A 76, 1977, p. 323-344. Zbl0351.35009MR477432
- [7] R. Froese, I. Herbst, Exponential lower bounds to solutions of the Schrödinger equation: lower bounds for the spherical average, Commun. Math. Phys., t. 92, 1983, p. 71-80. Zbl0556.35031MR728448
- [8] B. Simon, Pointwise bounds on eigenfunctions and wave packets in N-body quantum systems III, Trans. Amer. Math. Soc., t. 208, 1975, p. 317-329. Zbl0305.35078MR417597
- [9] T. Hoffmann-Ostenhof, A comparison theorem for differential inequalities with applications in quantum mechanics, J. Phys., t. A 13, 1980, p. 417-424. Zbl0432.35080MR558638
- [10] E.B. Davies, JWKB and related bounds on Schrödinger eigenfunctions, Bull. London Math. Soc., t. 14, 1982, p. 273-284. Zbl0525.35026MR663479
- [11] R. Ahlrichs, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, J. Morgan, Bounds on the decay of electron densities with screening, Phys. Rev., t. A 23, 1981, p. 2106-2116. Zbl0446.35017MR611815
- [12] R. Froese, I. Herbst, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, L2-lower bounds to solutions of one-body Schrödinger equations, Proc. Roy. Soc. Edinburgh, t. 95 A, 1983, p. 25-38. Zbl0547.35038MR723095
- [13] W.O. Amrein, A.M. Berthier, V. Georgescu, Lower bounds for zero energy eigen–functions of Schrödinger operators. Helv. Phys. Acta, t. 57, 1984, p. 301-306. Zbl0618.35086MR762143
- [14] M. Reed, B. Simon, Methods of modern mathematical physics IV. Analysis of operators, Academic Press, New York, 1978. Zbl0401.47001MR493421
- [15] W.O. Amrein, A.M. Berthier, V. Georgescu, Lp-inequalities for the Laplacian and unique continuation, Ann. Inst. Fourier, t. 31, 1981, p. 153-168. Zbl0468.35017MR638622
- [16] L. Hörmander, Uniqueness theorems for second order elliptic differential equations, Commun. P. D. E., t. 8, 1983, p. 21-63. Zbl0546.35023MR686819
- [17] M. Aizenman, B. Simon, Brownian motion and Harnack's inequality for Schrödinger operators, Comm. Pure, Appl. Math., t. 35, 1982, p. 209-271. Zbl0459.60069MR644024
- [18] M. Abramowitz, I.A. Stegun, Handbook of mathematical functions, Dover, New York, 1968.
- [19] H.D. Block, A class of inequalities, Proc. Amer. Soc., t. 8, 1957, p. 844-851. Zbl0081.05104MR92830
- [20] M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, Anzeiger der Österr. Akad. d. Wiss., t. 8, 1976, p. 91-95, Zbl0351.26023
- [21] T. Kato, Perturbation theory for linear operators, SpringerNew York, 1976, 2nd ed. Zbl0342.47009MR407617
- [22] C.B. Morrey, Multiple integrals in the calculus of variations, SpringerNew York, 1966. Zbl0142.38701MR202511
- [23] M. Reed, B. Simon, Methods of mathematical physics II, Fourier analysis, selfadjointness, Academic Press, New York, 1975. Zbl0308.47002
- [24] M. Hoffman-Ostenhof, T. Hoffmann-Ostenhof, Schrödinger inequalities and asymptotic behaviour of the one density of atoms and molecules, Phys. Rev., t. A 16, 1977, p. 1782-1785. MR471726
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.