Asymptotics and continuity properties near infinity of solutions of Schrödinger equations in exterior domains
Maria Hoffmann-Ostenhof; Thomas Hoffmann-Ostenhof; Jörg Swetina
Annales de l'I.H.P. Physique théorique (1987)
- Volume: 46, Issue: 3, page 247-280
- ISSN: 0246-0211
Access Full Article
topHow to cite
topHoffmann-Ostenhof, Maria, Hoffmann-Ostenhof, Thomas, and Swetina, Jörg. "Asymptotics and continuity properties near infinity of solutions of Schrödinger equations in exterior domains." Annales de l'I.H.P. Physique théorique 46.3 (1987): 247-280. <http://eudml.org/doc/76359>.
@article{Hoffmann1987,
author = {Hoffmann-Ostenhof, Maria, Hoffmann-Ostenhof, Thomas, Swetina, Jörg},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {asymptotics; regularity; scaling; eigenfunctions; harmonic oscillator},
language = {eng},
number = {3},
pages = {247-280},
publisher = {Gauthier-Villars},
title = {Asymptotics and continuity properties near infinity of solutions of Schrödinger equations in exterior domains},
url = {http://eudml.org/doc/76359},
volume = {46},
year = {1987},
}
TY - JOUR
AU - Hoffmann-Ostenhof, Maria
AU - Hoffmann-Ostenhof, Thomas
AU - Swetina, Jörg
TI - Asymptotics and continuity properties near infinity of solutions of Schrödinger equations in exterior domains
JO - Annales de l'I.H.P. Physique théorique
PY - 1987
PB - Gauthier-Villars
VL - 46
IS - 3
SP - 247
EP - 280
LA - eng
KW - asymptotics; regularity; scaling; eigenfunctions; harmonic oscillator
UR - http://eudml.org/doc/76359
ER -
References
top- [1] L. Bers, Local behaviour of solutions of general elliptic equations. Comm. Pure Appl. Math., t. 8, 1955, p. 473-496. Zbl0066.08101MR75416
- [2] J. Boman, Differentiability of a function and of its composition with functions of one variable. Math. Scand., t. 20, 1967, p. 249-268. Zbl0182.38302MR237728
- [3] L.A. Cafarelli and A. Friedman, Partial regularity of the zero-set of solutions of linear and superlinear elliptic equations. J. Differ. Equations, t. 60, 1985, p. 420- 433. Zbl0593.35047MR811775
- [4] S.Y. Cheng, Eigenfunctions and nodal sets. Comment. Math. Helvetici, t. 51, 1976, p. 43-55. Zbl0334.35022MR397805
- [5] A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Bateman manuscript project : higher transcendental functions, vol. II, McGraw Hill, New York, Toronto, London, 1953. Zbl0052.29502MR66496
- [6] R. Froese and I. Herbst, Patterns of exponential decay for solutions to second order elliptic equations in a sector of R2, to appear in J. d'Analyse Math. Zbl0657.35047
- [7] D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order, Springer Verlag, Berlin, Heidelberg, New York. 1977. Zbl0361.35003MR473443
- [8] I. Herbst, Lower bounds in cones for solutions to the Schrödinger equation, J. d'Analyse Math., t. 47, 1986, p. 151-174. Zbl0627.35022MR874048
- [9] M. Hoffmann-Ostenhof, Asymptotics of the nodal lines of solutions of 2-dimensional Schrödinger equations, submitted for publication. Zbl0627.35024
- [10] M. Hoffmann-Ostenhof and T. Hoffmann-Ostenhof, On the asymptotics of nodes of L2-solutions of Schrödinger equations, in preparation. Zbl0658.35021
- [11] M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof and B. Simon, Brownian motion and a consequence of Harnack's inequality: nodes of quantum wave functions. Proc. Amer. Math. Soc., t. 80, 1980, p. 301-305. Zbl0444.35024MR577764
- [12] M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof and J. Swetina, Pointwise bounds on the asymptotics of spherically averaged L2-solutions of one-body Schrödinger equations. Ann. Inst. H. Poincaré, t. 42, 1985, p. 341-361. Zbl0595.35033MR801233
- [13] M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof and J. Swetina, Continuity and nodal properties near infinity for solutions of 2-dimensional Schrödinger equations. Duke Math. J., t. 53, 1986, p. 271-306. Zbl0599.35036MR835810
- [14] J. Mujica, Complex analysis in Banach spaces, North-Holland Mathematics Studies, t. 120, 1986, chapter 1. Zbl0586.46040MR842435
- [15] M.H. Protter and H.F. Weinberger, Maximum principles in differential equations, Prentice Hall, Englewood Cliffs, 1967. Zbl0153.13602MR219861
- [16] E.M. Stein, Singular integrals and differentiability of functions, Princeton University Press, Princeton, NJ, 1970. Zbl0207.13501MR290095
- [17] D.W. Thoe, Lower bounds for solutions of perturbed Helmholtz equations in exterior regions. J. Math. Anal. Appl., t. 102, 1984, p. 113-122. Zbl0552.35015MR751346
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.