Asymptotics and continuity properties near infinity of solutions of Schrödinger equations in exterior domains

Maria Hoffmann-Ostenhof; Thomas Hoffmann-Ostenhof; Jörg Swetina

Annales de l'I.H.P. Physique théorique (1987)

  • Volume: 46, Issue: 3, page 247-280
  • ISSN: 0246-0211

How to cite

top

Hoffmann-Ostenhof, Maria, Hoffmann-Ostenhof, Thomas, and Swetina, Jörg. "Asymptotics and continuity properties near infinity of solutions of Schrödinger equations in exterior domains." Annales de l'I.H.P. Physique théorique 46.3 (1987): 247-280. <http://eudml.org/doc/76359>.

@article{Hoffmann1987,
author = {Hoffmann-Ostenhof, Maria, Hoffmann-Ostenhof, Thomas, Swetina, Jörg},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {asymptotics; regularity; scaling; eigenfunctions; harmonic oscillator},
language = {eng},
number = {3},
pages = {247-280},
publisher = {Gauthier-Villars},
title = {Asymptotics and continuity properties near infinity of solutions of Schrödinger equations in exterior domains},
url = {http://eudml.org/doc/76359},
volume = {46},
year = {1987},
}

TY - JOUR
AU - Hoffmann-Ostenhof, Maria
AU - Hoffmann-Ostenhof, Thomas
AU - Swetina, Jörg
TI - Asymptotics and continuity properties near infinity of solutions of Schrödinger equations in exterior domains
JO - Annales de l'I.H.P. Physique théorique
PY - 1987
PB - Gauthier-Villars
VL - 46
IS - 3
SP - 247
EP - 280
LA - eng
KW - asymptotics; regularity; scaling; eigenfunctions; harmonic oscillator
UR - http://eudml.org/doc/76359
ER -

References

top
  1. [1] L. Bers, Local behaviour of solutions of general elliptic equations. Comm. Pure Appl. Math., t. 8, 1955, p. 473-496. Zbl0066.08101MR75416
  2. [2] J. Boman, Differentiability of a function and of its composition with functions of one variable. Math. Scand., t. 20, 1967, p. 249-268. Zbl0182.38302MR237728
  3. [3] L.A. Cafarelli and A. Friedman, Partial regularity of the zero-set of solutions of linear and superlinear elliptic equations. J. Differ. Equations, t. 60, 1985, p. 420- 433. Zbl0593.35047MR811775
  4. [4] S.Y. Cheng, Eigenfunctions and nodal sets. Comment. Math. Helvetici, t. 51, 1976, p. 43-55. Zbl0334.35022MR397805
  5. [5] A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Bateman manuscript project : higher transcendental functions, vol. II, McGraw Hill, New York, Toronto, London, 1953. Zbl0052.29502MR66496
  6. [6] R. Froese and I. Herbst, Patterns of exponential decay for solutions to second order elliptic equations in a sector of R2, to appear in J. d'Analyse Math. Zbl0657.35047
  7. [7] D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order, Springer Verlag, Berlin, Heidelberg, New York. 1977. Zbl0361.35003MR473443
  8. [8] I. Herbst, Lower bounds in cones for solutions to the Schrödinger equation, J. d'Analyse Math., t. 47, 1986, p. 151-174. Zbl0627.35022MR874048
  9. [9] M. Hoffmann-Ostenhof, Asymptotics of the nodal lines of solutions of 2-dimensional Schrödinger equations, submitted for publication. Zbl0627.35024
  10. [10] M. Hoffmann-Ostenhof and T. Hoffmann-Ostenhof, On the asymptotics of nodes of L2-solutions of Schrödinger equations, in preparation. Zbl0658.35021
  11. [11] M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof and B. Simon, Brownian motion and a consequence of Harnack's inequality: nodes of quantum wave functions. Proc. Amer. Math. Soc., t. 80, 1980, p. 301-305. Zbl0444.35024MR577764
  12. [12] M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof and J. Swetina, Pointwise bounds on the asymptotics of spherically averaged L2-solutions of one-body Schrödinger equations. Ann. Inst. H. Poincaré, t. 42, 1985, p. 341-361. Zbl0595.35033MR801233
  13. [13] M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof and J. Swetina, Continuity and nodal properties near infinity for solutions of 2-dimensional Schrödinger equations. Duke Math. J., t. 53, 1986, p. 271-306. Zbl0599.35036MR835810
  14. [14] J. Mujica, Complex analysis in Banach spaces, North-Holland Mathematics Studies, t. 120, 1986, chapter 1. Zbl0586.46040MR842435
  15. [15] M.H. Protter and H.F. Weinberger, Maximum principles in differential equations, Prentice Hall, Englewood Cliffs, 1967. Zbl0153.13602MR219861
  16. [16] E.M. Stein, Singular integrals and differentiability of functions, Princeton University Press, Princeton, NJ, 1970. Zbl0207.13501MR290095
  17. [17] D.W. Thoe, Lower bounds for solutions of perturbed Helmholtz equations in exterior regions. J. Math. Anal. Appl., t. 102, 1984, p. 113-122. Zbl0552.35015MR751346

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.