Semiclassical quantum mechanics, IV : large order asymptotics and more general states in more than one dimension
Annales de l'I.H.P. Physique théorique (1985)
- Volume: 42, Issue: 4, page 363-374
- ISSN: 0246-0211
Access Full Article
topHow to cite
topHagedorn, George A.. "Semiclassical quantum mechanics, IV : large order asymptotics and more general states in more than one dimension." Annales de l'I.H.P. Physique théorique 42.4 (1985): 363-374. <http://eudml.org/doc/76287>.
@article{Hagedorn1985,
author = {Hagedorn, George A.},
journal = {Annales de l'I.H.P. Physique théorique},
language = {eng},
number = {4},
pages = {363-374},
publisher = {Gauthier-Villars},
title = {Semiclassical quantum mechanics, IV : large order asymptotics and more general states in more than one dimension},
url = {http://eudml.org/doc/76287},
volume = {42},
year = {1985},
}
TY - JOUR
AU - Hagedorn, George A.
TI - Semiclassical quantum mechanics, IV : large order asymptotics and more general states in more than one dimension
JO - Annales de l'I.H.P. Physique théorique
PY - 1985
PB - Gauthier-Villars
VL - 42
IS - 4
SP - 363
EP - 374
LA - eng
UR - http://eudml.org/doc/76287
ER -
References
top- [1] J.-M. Combes, P. Duclos, R. Seiler, Krein's Formula and One-Dimensional Multiple-Well. J. Functional Analysis, t. 52, 1983, p. 257-301. Zbl0562.47002MR707207
- [2] J.-M. Combes, P. Duclos and R. Seiler, A Perturbative Method for Tunneling, in Mathematical Physics VII, ed. by W. E. Brittin, K. E. Gustafson and W. Wyss. Amsterdam: North Holland Physics Publishing, 1984.
- [3] G.A. Hagedorn, Semiclassical Quantum Mechanics I: The ħ → 0 Limit for Coherent States. Commun. Math. Phys., t. 71, 1980, p. 77-93. MR556903
- [4] G.A. Hagedorn, Semiclassical Quantum Mechanics III: The Large Order Asymptotics and More General States. Ann. Phys., t. 135, 1981, p. 58-70. MR630204
- [5] G.A. Hagedorn, A Particle Limit for the Wave Equation with a Variable Wave Speed. Comm. Pure Appl. Math., t. 37, 1984, p. 91-100. Zbl0509.35050MR728267
- [6] G.A. Hagedorn, M. Loss and J. Slawny, Non-Stochasticity of Time Dependent Quadratic Hamiltonians and the Spectra of Canonical Transformations. J. Phys. A. (to appear). Zbl0601.70013MR833433
- [7] E.J. Heller, Time Dependent Approach to Semiclassical Dynamics. J. Chem. Phys., t. 62, 1975, p. 1544-1555.
- [8] E.J. Heller and S.-Y. Lee, Exact Time-Dependent Wave Packet Propagation: Application to the Photodissociation of Methyl Iodide. J. Chem. Phys., t. 76, 1982, p. 3035-3044.
- [9] K. Hepp, The Classical Limit for Quantum Mechanical Correlation Functions. Commun. Math. Phys., t. 35, 1974, p. 265-277. MR332046
- [10] J.V. Ralston, Gaussian Beams and the Propagation of Singularities, in Studies in Partial Differential Equations, ed. by W. Littman. MAA Studies in Mathematics, t. 23, Mathematical Association of America, 1982. Zbl0533.35062MR716507
- [11] B. Simon, Semiclassical Analysis of Low Lying Eigenvalues I. Non-Degenerate Minima : Asymptotic Expansions. Ann. Inst. H. Poincaré, t. 38, 1983, p. 295-308. Zbl0526.35027MR708966
- [12] B. Simon, Semiclassical Analysis of Low Lying Eigenvalues II. Tunneling.CaliforniaInstitute of Technology Preprint. 1984. Zbl0626.35070MR750717
- [13] W.R.E. Weiss and G.A. Hagedorn, Reflection and Transmission of High Frequency Pulses at an Interface. Trnspt. Theory Stat. Phys. (to appear). Zbl0614.35052MR813497
- [14] K. Yajima, The Quasi-Classical Limit of Quantum Scattering Theory. Commun. Math. Phys., t. 69, 1979, p. 101-130. Zbl0425.35076
- [15] K. Yajima, The Quasi-Classical Limit of Scattering Amplitude I. Finite Range Potentials. University of Tokyo Preprint. 1984. Zbl0591.35079
Citations in EuDML Documents
top- S. L. Robinson, The semiclassical limit of quantum dynamics. II : scattering theory
- M. Combescure, A quantum particle in a quadrupole radio-frequency trap
- Takahiro Arai, On the large order asymptotics of general states in semiclassical quantum mechanics
- Armin Kargol, Semiclassical scattering by the Coulomb potential
- George A. Hagedorn, Alain Joye, Landau-Zener transitions through small electronic eigenvalue gaps in the Born-Oppenheimer approximation
- François Castella, The radiation condition at infinity for the high-frequency Helmholtz equation with source term: a wave packet approach
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.