Semiclassical quantum mechanics, IV : large order asymptotics and more general states in more than one dimension

George A. Hagedorn

Annales de l'I.H.P. Physique théorique (1985)

  • Volume: 42, Issue: 4, page 363-374
  • ISSN: 0246-0211

How to cite

top

Hagedorn, George A.. "Semiclassical quantum mechanics, IV : large order asymptotics and more general states in more than one dimension." Annales de l'I.H.P. Physique théorique 42.4 (1985): 363-374. <http://eudml.org/doc/76287>.

@article{Hagedorn1985,
author = {Hagedorn, George A.},
journal = {Annales de l'I.H.P. Physique théorique},
language = {eng},
number = {4},
pages = {363-374},
publisher = {Gauthier-Villars},
title = {Semiclassical quantum mechanics, IV : large order asymptotics and more general states in more than one dimension},
url = {http://eudml.org/doc/76287},
volume = {42},
year = {1985},
}

TY - JOUR
AU - Hagedorn, George A.
TI - Semiclassical quantum mechanics, IV : large order asymptotics and more general states in more than one dimension
JO - Annales de l'I.H.P. Physique théorique
PY - 1985
PB - Gauthier-Villars
VL - 42
IS - 4
SP - 363
EP - 374
LA - eng
UR - http://eudml.org/doc/76287
ER -

References

top
  1. [1] J.-M. Combes, P. Duclos, R. Seiler, Krein's Formula and One-Dimensional Multiple-Well. J. Functional Analysis, t. 52, 1983, p. 257-301. Zbl0562.47002MR707207
  2. [2] J.-M. Combes, P. Duclos and R. Seiler, A Perturbative Method for Tunneling, in Mathematical Physics VII, ed. by W. E. Brittin, K. E. Gustafson and W. Wyss. Amsterdam: North Holland Physics Publishing, 1984. 
  3. [3] G.A. Hagedorn, Semiclassical Quantum Mechanics I: The ħ → 0 Limit for Coherent States. Commun. Math. Phys., t. 71, 1980, p. 77-93. MR556903
  4. [4] G.A. Hagedorn, Semiclassical Quantum Mechanics III: The Large Order Asymptotics and More General States. Ann. Phys., t. 135, 1981, p. 58-70. MR630204
  5. [5] G.A. Hagedorn, A Particle Limit for the Wave Equation with a Variable Wave Speed. Comm. Pure Appl. Math., t. 37, 1984, p. 91-100. Zbl0509.35050MR728267
  6. [6] G.A. Hagedorn, M. Loss and J. Slawny, Non-Stochasticity of Time Dependent Quadratic Hamiltonians and the Spectra of Canonical Transformations. J. Phys. A. (to appear). Zbl0601.70013MR833433
  7. [7] E.J. Heller, Time Dependent Approach to Semiclassical Dynamics. J. Chem. Phys., t. 62, 1975, p. 1544-1555. 
  8. [8] E.J. Heller and S.-Y. Lee, Exact Time-Dependent Wave Packet Propagation: Application to the Photodissociation of Methyl Iodide. J. Chem. Phys., t. 76, 1982, p. 3035-3044. 
  9. [9] K. Hepp, The Classical Limit for Quantum Mechanical Correlation Functions. Commun. Math. Phys., t. 35, 1974, p. 265-277. MR332046
  10. [10] J.V. Ralston, Gaussian Beams and the Propagation of Singularities, in Studies in Partial Differential Equations, ed. by W. Littman. MAA Studies in Mathematics, t. 23, Mathematical Association of America, 1982. Zbl0533.35062MR716507
  11. [11] B. Simon, Semiclassical Analysis of Low Lying Eigenvalues I. Non-Degenerate Minima : Asymptotic Expansions. Ann. Inst. H. Poincaré, t. 38, 1983, p. 295-308. Zbl0526.35027MR708966
  12. [12] B. Simon, Semiclassical Analysis of Low Lying Eigenvalues II. Tunneling.CaliforniaInstitute of Technology Preprint. 1984. Zbl0626.35070MR750717
  13. [13] W.R.E. Weiss and G.A. Hagedorn, Reflection and Transmission of High Frequency Pulses at an Interface. Trnspt. Theory Stat. Phys. (to appear). Zbl0614.35052MR813497
  14. [14] K. Yajima, The Quasi-Classical Limit of Quantum Scattering Theory. Commun. Math. Phys., t. 69, 1979, p. 101-130. Zbl0425.35076
  15. [15] K. Yajima, The Quasi-Classical Limit of Scattering Amplitude I. Finite Range Potentials. University of Tokyo Preprint. 1984. Zbl0591.35079

Citations in EuDML Documents

top
  1. S. L. Robinson, The semiclassical limit of quantum dynamics. II : scattering theory
  2. M. Combescure, A quantum particle in a quadrupole radio-frequency trap
  3. Takahiro Arai, On the large order asymptotics of general states in semiclassical quantum mechanics
  4. Armin Kargol, Semiclassical scattering by the Coulomb potential
  5. George A. Hagedorn, Alain Joye, Landau-Zener transitions through small electronic eigenvalue gaps in the Born-Oppenheimer approximation
  6. François Castella, The radiation condition at infinity for the high-frequency Helmholtz equation with source term: a wave packet approach

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.