Semiclassical scattering by the Coulomb potential

Armin Kargol

Annales de l'I.H.P. Physique théorique (1999)

  • Volume: 71, Issue: 3, page 339-357
  • ISSN: 0246-0211

How to cite

top

Kargol, Armin. "Semiclassical scattering by the Coulomb potential." Annales de l'I.H.P. Physique théorique 71.3 (1999): 339-357. <http://eudml.org/doc/76838>.

@article{Kargol1999,
author = {Kargol, Armin},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Gaussian probability density; approximate semiclassical time evolution; classical Møller transformations},
language = {eng},
number = {3},
pages = {339-357},
publisher = {Gauthier-Villars},
title = {Semiclassical scattering by the Coulomb potential},
url = {http://eudml.org/doc/76838},
volume = {71},
year = {1999},
}

TY - JOUR
AU - Kargol, Armin
TI - Semiclassical scattering by the Coulomb potential
JO - Annales de l'I.H.P. Physique théorique
PY - 1999
PB - Gauthier-Villars
VL - 71
IS - 3
SP - 339
EP - 357
LA - eng
KW - Gaussian probability density; approximate semiclassical time evolution; classical Møller transformations
UR - http://eudml.org/doc/76838
ER -

References

top
  1. [1] K. Asada and D. Fujiwara, On some oscillatory integral transforms in L2(Rn), Japanese J. Math.4 (1978) 233-261. MR528863
  2. [2] J. Dereziński and C. Gerard, Long-range scattering in the position representation, Preprint. Zbl0886.34072MR1459635
  3. [3] J. Dereziński and C. Gerard, Asymptotic Completeness of N-Particle Systems, Texts and Monographs in Physics, Springer, 1997. 
  4. [4] J.D. Dollard, Asymptotic convergence and the Coulomb interaction, J. Math. Phys.5 (6) (1964) 729-738. MR163620
  5. [5] D. Fujiwara, A construction of the fundamental solution for Schrödinger equation, J. d'Analyse Math.35 (1979) 41-96. Zbl0418.35032MR555300
  6. [6] G.A. Hagedorn, Semiclassical quantum mechanics I. ħ → 0 limit for coherent states, Comm. Math. Phys.71 (1980) 77-93. MR556903
  7. [7] G.A. Hagedorn, A time-dependent Born-Oppenheimer approximation, Comm. Math. Phys.77 (1980) 1-19. Zbl0448.70013MR588684
  8. [8] G.A. Hagedorn, Semiclassical quantum mechanics IV. Large order asymptotics and more general states in more than one dimension, Ann. Inst. H. Poincaré42 (1985) 363-374. Zbl0900.81053MR801234
  9. [9] I.W. Herbst, Classical scattering with long range forces, Comm. Math. Phys.35 (1974) 193-214. Zbl0309.70011MR351326
  10. [10] L. Hörmander, The existence of wave operators in scattering theory, Math. Z.149 (1976) 69-91. Zbl0319.35059MR393884
  11. [11] H. Isozaki and H. Kitada, Modified wave operators with time-independent modifiers, J. Fac. Sci. Univ. Tokyo, Sec. 1A32 (1985) 77-104. Zbl0582.35036MR783182
  12. [12] A. Kargol, An infinite time limit for the time-dependent Born-Oppenheimer approximation, Comm. Math. Phys.166 (1994) 129-148. Zbl0821.47051MR1309544
  13. [13] A. Kargol, The Born-Oppenheimer approximation to the wave operators, Comm. Theoret. Phys., to appear. Zbl0821.47051MR1720505
  14. [14] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. III, Academic Press, New York, 1979. Zbl0405.47007
  15. [15] S.L. Robinson, The semiclassical limit of quantum dynamics II. Scattering theory, Ann. Inst. H. Poincaré48 (4) (1988) 281-296. Zbl0666.35071MR969167
  16. [16] B. Simon, Wave operators for classical particle scattering, Comm. Math. Phys.23 (1971) 37-48. Zbl0238.70012MR294899
  17. [17] D.R. Yafaev, Wave operators for the Schrödinger equation, Theor. Math. Phys.45 (1980) 992-998. Zbl0467.35076MR604521
  18. [18] K. Yajima, The quasi-classical limit of quantum scattering theory, Comm. Math. Phys.69 (1979) 101-129. Zbl0425.35076
  19. [19] K. Yajima, The quasi-classical limit of quantum scattering theory II. Long-range scattering, Duke Math. J.48 (4) (1981) 1-22. Zbl0454.35069

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.