Semiclassical scattering by the Coulomb potential
Annales de l'I.H.P. Physique théorique (1999)
- Volume: 71, Issue: 3, page 339-357
- ISSN: 0246-0211
Access Full Article
topHow to cite
topKargol, Armin. "Semiclassical scattering by the Coulomb potential." Annales de l'I.H.P. Physique théorique 71.3 (1999): 339-357. <http://eudml.org/doc/76838>.
@article{Kargol1999,
author = {Kargol, Armin},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Gaussian probability density; approximate semiclassical time evolution; classical Møller transformations},
language = {eng},
number = {3},
pages = {339-357},
publisher = {Gauthier-Villars},
title = {Semiclassical scattering by the Coulomb potential},
url = {http://eudml.org/doc/76838},
volume = {71},
year = {1999},
}
TY - JOUR
AU - Kargol, Armin
TI - Semiclassical scattering by the Coulomb potential
JO - Annales de l'I.H.P. Physique théorique
PY - 1999
PB - Gauthier-Villars
VL - 71
IS - 3
SP - 339
EP - 357
LA - eng
KW - Gaussian probability density; approximate semiclassical time evolution; classical Møller transformations
UR - http://eudml.org/doc/76838
ER -
References
top- [1] K. Asada and D. Fujiwara, On some oscillatory integral transforms in L2(Rn), Japanese J. Math.4 (1978) 233-261. MR528863
- [2] J. Dereziński and C. Gerard, Long-range scattering in the position representation, Preprint. Zbl0886.34072MR1459635
- [3] J. Dereziński and C. Gerard, Asymptotic Completeness of N-Particle Systems, Texts and Monographs in Physics, Springer, 1997.
- [4] J.D. Dollard, Asymptotic convergence and the Coulomb interaction, J. Math. Phys.5 (6) (1964) 729-738. MR163620
- [5] D. Fujiwara, A construction of the fundamental solution for Schrödinger equation, J. d'Analyse Math.35 (1979) 41-96. Zbl0418.35032MR555300
- [6] G.A. Hagedorn, Semiclassical quantum mechanics I. ħ → 0 limit for coherent states, Comm. Math. Phys.71 (1980) 77-93. MR556903
- [7] G.A. Hagedorn, A time-dependent Born-Oppenheimer approximation, Comm. Math. Phys.77 (1980) 1-19. Zbl0448.70013MR588684
- [8] G.A. Hagedorn, Semiclassical quantum mechanics IV. Large order asymptotics and more general states in more than one dimension, Ann. Inst. H. Poincaré42 (1985) 363-374. Zbl0900.81053MR801234
- [9] I.W. Herbst, Classical scattering with long range forces, Comm. Math. Phys.35 (1974) 193-214. Zbl0309.70011MR351326
- [10] L. Hörmander, The existence of wave operators in scattering theory, Math. Z.149 (1976) 69-91. Zbl0319.35059MR393884
- [11] H. Isozaki and H. Kitada, Modified wave operators with time-independent modifiers, J. Fac. Sci. Univ. Tokyo, Sec. 1A32 (1985) 77-104. Zbl0582.35036MR783182
- [12] A. Kargol, An infinite time limit for the time-dependent Born-Oppenheimer approximation, Comm. Math. Phys.166 (1994) 129-148. Zbl0821.47051MR1309544
- [13] A. Kargol, The Born-Oppenheimer approximation to the wave operators, Comm. Theoret. Phys., to appear. Zbl0821.47051MR1720505
- [14] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. III, Academic Press, New York, 1979. Zbl0405.47007
- [15] S.L. Robinson, The semiclassical limit of quantum dynamics II. Scattering theory, Ann. Inst. H. Poincaré48 (4) (1988) 281-296. Zbl0666.35071MR969167
- [16] B. Simon, Wave operators for classical particle scattering, Comm. Math. Phys.23 (1971) 37-48. Zbl0238.70012MR294899
- [17] D.R. Yafaev, Wave operators for the Schrödinger equation, Theor. Math. Phys.45 (1980) 992-998. Zbl0467.35076MR604521
- [18] K. Yajima, The quasi-classical limit of quantum scattering theory, Comm. Math. Phys.69 (1979) 101-129. Zbl0425.35076
- [19] K. Yajima, The quasi-classical limit of quantum scattering theory II. Long-range scattering, Duke Math. J.48 (4) (1981) 1-22. Zbl0454.35069
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.