### A note on the convergence of quantizers.

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

We define and analyze Toeplitz operators whose symbols are the elements of the complex quantum plane, a non-commutative, infinite dimensional algebra. In particular, the symbols do not come from an algebra of functions. The process of forming operators from non-commuting symbols can be considered as a second quantization. To do this we construct a reproducing kernel associated with the quantum plane. We also discuss the commutation relations of creation and annihilation operators which are defined...

This note explains how the two measures used to define the μ-deformed Segal-Bargmann space are natural and essentially unique structures. As is well known, the density with respect to Lebesgue measure of each of these measures involves a Macdonald function. Our primary result is that these densities are the solution of a system of ordinary differential equations which is naturally associated with this theory. We then solve this system and find the known densities as well as a "spurious" solution...

In this paper we introduce a new concept of generalized solutions generalizing the notion of relaxed solutions recently introduced by Fattorini. We present some results on the question of existence of generalized or measure valued solutions for semilinear evolution equations on Banach spaces with polynomial nonlinearities. The results are illustrated by two examples one of which arises in nonlinear quantum mechanics. The results are then applied to some control problems.