Asymptotic and analytic properties of resonance functions

Erik Balslev; Erik Skibsted

Annales de l'I.H.P. Physique théorique (1990)

  • Volume: 53, Issue: 1, page 123-137
  • ISSN: 0246-0211

How to cite

top

Balslev, Erik, and Skibsted, Erik. "Asymptotic and analytic properties of resonance functions." Annales de l'I.H.P. Physique théorique 53.1 (1990): 123-137. <http://eudml.org/doc/76492>.

@article{Balslev1990,
author = {Balslev, Erik, Skibsted, Erik},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {resonances; Schrödinger operators; dilation-analytic; short-range; exponentially decaying potential},
language = {eng},
number = {1},
pages = {123-137},
publisher = {Gauthier-Villars},
title = {Asymptotic and analytic properties of resonance functions},
url = {http://eudml.org/doc/76492},
volume = {53},
year = {1990},
}

TY - JOUR
AU - Balslev, Erik
AU - Skibsted, Erik
TI - Asymptotic and analytic properties of resonance functions
JO - Annales de l'I.H.P. Physique théorique
PY - 1990
PB - Gauthier-Villars
VL - 53
IS - 1
SP - 123
EP - 137
LA - eng
KW - resonances; Schrödinger operators; dilation-analytic; short-range; exponentially decaying potential
UR - http://eudml.org/doc/76492
ER -

References

top
  1. [1] S. Agmon, On the asymptotic behaviour of solutions of schrödinger type equations in unbounded domains, Anal. Math. Appl., J.-L. Lions' 60th birthday volume, Paris1988. Zbl0681.35010MR956950
  2. [2] J. Aguilar and J.-M. Combes, A class of analytic perturbations for one-body Schrödinger Hamiltonians, Commun. Math. Phys., Vol. 22, 1971, pp. 269-279. Zbl0219.47011MR345551
  3. E. Balslev and J.-M. Combes, Spectral properties of manybody Schrödinger operators with dilation-analytic interactions, Comm. Math. Phys., Vol. 22, 1971, pp. 280-294. Zbl0219.47005MR345552
  4. [3] E. Balslev, Analytic scattering theory of two-body Schrodinger operators, J. Funct. Anal., Vol. 29, 3, 1978, pp. 375-396. Zbl0392.47003MR512251
  5. [4] E. Balslev, Asymptotic properties of resonance functions and generalized eigenfunctions, Lectures of the Nordic Summer School on Schrödinger Operators1988, in Springer Verlag, Lect. Notes Math., University of Virginia preprint. MR1037316
  6. [5] E. Balslev and E. Skibsted, Resonance theory of two-body Schrödinger operators, Ann. Inst. H. Poincaré, Vol. 51, 2, 1989. Zbl0714.35063MR1033614
  7. [6] W. Hunziker, Distortion analyticity and molecular resonance curves, Ann. Inst. H. Poincaré, Vol. 48, 4, 1986, pp. 339-358. Zbl0619.46068MR880742
  8. [7] J.L.W.V. Jensen, Sur les fonctions convexes et les inegalités entre les valeurs moyennes, Acta Math., Vol. 30, 1906, pp. 175-193. Zbl37.0422.02JFM37.0422.02
  9. [8] E. Skibsted, On the evolution of resonance states, J. Math. Anal. Appl., Vol. 141, No. 1, 1989, pp. 27-48. Zbl0688.47006MR1004582

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.