Scattering theory for hamiltonians with Stark effect

Arne Jensen

Annales de l'I.H.P. Physique théorique (1987)

  • Volume: 46, Issue: 4, page 383-395
  • ISSN: 0246-0211

How to cite

top

Jensen, Arne. "Scattering theory for hamiltonians with Stark effect." Annales de l'I.H.P. Physique théorique 46.4 (1987): 383-395. <http://eudml.org/doc/76365>.

@article{Jensen1987,
author = {Jensen, Arne},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {selfadjoint operator; symmetric operator; Schrödinger operator; scattering theory; Hamiltonians with Stark effect; wave operators},
language = {eng},
number = {4},
pages = {383-395},
publisher = {Gauthier-Villars},
title = {Scattering theory for hamiltonians with Stark effect},
url = {http://eudml.org/doc/76365},
volume = {46},
year = {1987},
}

TY - JOUR
AU - Jensen, Arne
TI - Scattering theory for hamiltonians with Stark effect
JO - Annales de l'I.H.P. Physique théorique
PY - 1987
PB - Gauthier-Villars
VL - 46
IS - 4
SP - 383
EP - 395
LA - eng
KW - selfadjoint operator; symmetric operator; Schrödinger operator; scattering theory; Hamiltonians with Stark effect; wave operators
UR - http://eudml.org/doc/76365
ER -

References

top
  1. [1] J.E. Avron, I.W. Herbst, Spectral and scattering theory for Schrödinger operators related to Stark effect. Commun. Math. Phys., t. 52, 1977, p. 239-254. Zbl0351.47007MR468862
  2. [2] M. Ben-Artzi, Remarks on Schrödinger operators with an electric field and deterministic potentials. J. Math. Anal. Appl., t. 109, 1985, p. 333-339. Zbl0579.34018MR802899
  3. [3] M. Ben-Artzi, A. Devinatz, The limiting absorption principle for partial differential operators. Preprint, 1985. Zbl0624.35068MR878907
  4. [4] F. Bentosela, R. Carmona, P. Duclos, B. Simon, B. Souillard, R. Weder, Schrödinger operators with an electric field and random or deterministic potentials. Commun. Math. Phys., t. 88, 1983, p. 387-397. Zbl0531.60061MR701924
  5. [5] R. Carmona, One-dimensional Schrödinger operators with random or deterministic potentials: New spectral types. J. Funct. Anal., t. 51, 1983, p. 229-258. Zbl0516.60069MR701057
  6. [6] F. Delyon, B. Simon, B. Souillard, From power pure point to continuous spectrum in disordered systems. Ann. Inst. H. Poincaré, Sect. A, t. 42, 1985, p. 283-309. Zbl0579.60056MR797277
  7. [7] W. Herbst, Unitary equivalence of Stark effect Hamiltonians. Math. Z., t. 155, 1977, p. 55-70. Zbl0338.47009MR449318
  8. [8] I.W. Herbst, B. Simon, Dilation analyticity in constant electric fields. II. N-body problem, Borel summability. Commun. Math. Phys., t. 80, 1981, p. 181-216. Zbl0473.47038MR623157
  9. [9] A. Jensen, Propagation estimates for Schrödinger-type operators. Trans. Amer. Math. Soc., t. 291, 1985, p. 129-144. Zbl0577.35089MR797050
  10. [10] A. Jensen, Asymptotic completeness for a new class of Stark effect Hamiltonians. Commun. Math. Phys., t. 107, 1986, p. 21-28. Zbl0606.34020MR861882
  11. [11] A. Jensen, Commutator methods and asymptotic completeness for one-dimensional Stark effect Hamiltonians. Schrödinger operators, Aarhus1985 (ed. E. Balslev). Springer, Lecture Notes in Mathematics, vol. 1218, 1986, p. 151-166. Zbl0608.35013MR869600
  12. [12] A. Jensen, E. Mourre, P. Perry, Multiple commutator estimates and resolvent smoothness in quantum scattering theory. Ann. Inst. H. Poincaré, Sect. A, t. 41, 1984, p. 207-224. Zbl0561.47007MR769156
  13. [13] T. Kato, Perturbation theory for linear operators. Springer Verlag, Heidelberg, Berlin, New York, 2nd edition, 1976. Zbl0342.47009MR407617
  14. [14] E. Mourre, Link between the geometrical and the spectral transformation approach in scattering theory. Commun. Math. Phys., t. 68, 1979, p. 91-94. Zbl0429.47006MR539739
  15. [15] P. Perry, Scattering theory by the Enss method. Math. Reports, t. 1, part 1, 1983. Zbl0529.35004MR752694
  16. [16] P. Perry, I. Sigal, B. Simon, Spectral analysis of N-body Schrödinger operators. Ann. Math., t. 114, 1981, p. 519-567. Zbl0477.35069MR634428
  17. [17] P.A. Rejto, K.B. Sinha, Absolute continuity for a 1-dimensional model of the Stark–Hamiltonian. Helv. Phys. Acta, t. 49, 1976, p. 389-413. MR416356
  18. [18] B. Simon, Phase space analysis of simple scattering systems: Extensions of some work of Enss. Duke Math. J., t. 46, 1979, p. 119-168. Zbl0402.35076MR523604
  19. [19] K. Veselic, J. Weidmann, Potential scattering in a homogeneous electrostatic field. Math. Z., t. 156, 1977, p. 93-104. Zbl0364.35042MR510118
  20. [20] J. Weidmann, Linear operators in Hilbert space. Graduate Texts in Mathematics, Springer Verlag, Heidelberg, Berlin, New York, 1980. Zbl0434.47001MR566954
  21. [21] K. Yajima, Spectral and scattering theory for Schrödinger operators with Stark effect. J. Fac. Sci. Univ. Tokyo, Sect. IA, t. 26, 1979, p. 377-390. Zbl0429.35027MR560003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.