Classical and quantum scattering for Stark hamiltonians with slowly decaying potentials
Annales de l'I.H.P. Physique théorique (1991)
- Volume: 54, Issue: 3, page 229-243
- ISSN: 0246-0211
Access Full Article
topHow to cite
topJensen, Arne, and Ozawa, Tohru. "Classical and quantum scattering for Stark hamiltonians with slowly decaying potentials." Annales de l'I.H.P. Physique théorique 54.3 (1991): 229-243. <http://eudml.org/doc/76531>.
@article{Jensen1991,
author = {Jensen, Arne, Ozawa, Tohru},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {scattering theory for Stark Hamiltonains; classical wave operators exist and are asymptotically complete},
language = {eng},
number = {3},
pages = {229-243},
publisher = {Gauthier-Villars},
title = {Classical and quantum scattering for Stark hamiltonians with slowly decaying potentials},
url = {http://eudml.org/doc/76531},
volume = {54},
year = {1991},
}
TY - JOUR
AU - Jensen, Arne
AU - Ozawa, Tohru
TI - Classical and quantum scattering for Stark hamiltonians with slowly decaying potentials
JO - Annales de l'I.H.P. Physique théorique
PY - 1991
PB - Gauthier-Villars
VL - 54
IS - 3
SP - 229
EP - 243
LA - eng
KW - scattering theory for Stark Hamiltonains; classical wave operators exist and are asymptotically complete
UR - http://eudml.org/doc/76531
ER -
References
top- [1] J.E. Avron and I.W. Herbst, Spectral and Scattering Theory for the Schrôdinger Operators Related to the Stark Effect, Commun. Math. Phys., Vol. 52, 1977, pp. 239-254. Zbl0351.47007MR468862
- [2] I.W. Herbst, Unitary Equivalence of Stark Effect Hamiltonians, Math. Z., Vol. 155, 1977, pp. 55-70. Zbl0338.47009MR449318
- [3] A. Jensen, Asymptotic Completeness for a New Class of Stark Effect Hamiltonians, Commun. Math. Phys., Vol. 107, 1986, pp. 21-28. Zbl0606.34020MR861882
- [4] A. Jensen, Commutator Methods and Asymptotic Completeness for One-Dimensional Stark Effect Hamiltonians, pp. 151-166 in Schrödinger Operators, Aarhus, 1985, E. BALSLEV Ed., Springer Lect. Notes Math., No. 1218, 1986. Zbl0608.35013MR869600
- [5] A. Jensen, Scattering Theory for Hamiltonians with Stark Effect, Ann. Inst. Henri Poincaré, Phys. Théor., Vol. 46, 1987, pp. 383-395. Zbl0677.34026MR912156
- [6] A. Jensen and K. Yajima, preprint, 1990.
- [7] T. Kato, Perturbation Theory for Linear Operators, second edition, Springer-Verlag, Heidelberg, 1976. Zbl0342.47009MR407617
- [8] H. Kitada and K. Yajima, A Scattering Theory for Time-Dependent Long-Range Potentials, Duke Math. J., Vol. 42, 1982, pp. 341-376. Zbl0499.35087MR659945
- [9] M. Loss and B. Thaller, Scattering of Particles by Long-Range Magnetic Fields, Ann. Phys. (N. Y.), Vol. 176, 1987, pp. 159-180. Zbl0646.35074MR893482
- [10] T. Ozawa, Non-Existence of Wave Operators for Stark Effect Hamiltonians, preprint, 1989, Math. Z. (to appear).
- [11] M. Reed and B. Simon, Methods of Modern Mathematical Physics. Vol. 3, Scattering Theory, Academic Press, New York, 1979. Zbl0405.47007MR529429
- [12] B. Simon, Phase Space Analysis of Simple Scattering Systems. Extensions of Some Work of Enss, Duke Math. J., Vol. 46, 1979, pp. 119-168. Zbl0402.35076MR523604
- [13] K VESELIć and J. Weidmann, Potential Scattering in a Homogeneous Electrostatic Field, Math. Z., Vol. 156, 1977, pp. 93-104. Zbl0364.35042MR510118
- [14] D. White, The Stark effect and long range scattering in two Hilbert spaces, preprint, 1990. Zbl0695.35144MR1089052
- [15] K. Yajima, Spectral and Scattering Theory for Schrôdinger Operators with Stark Effect, J. Fac. Sci. Univ. Tokyo, Sect IA, Vol. 26, 1979, pp. 377-390. Zbl0429.35027MR560003
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.