Classical and quantum scattering for Stark hamiltonians with slowly decaying potentials

Arne Jensen; Tohru Ozawa

Annales de l'I.H.P. Physique théorique (1991)

  • Volume: 54, Issue: 3, page 229-243
  • ISSN: 0246-0211

How to cite

top

Jensen, Arne, and Ozawa, Tohru. "Classical and quantum scattering for Stark hamiltonians with slowly decaying potentials." Annales de l'I.H.P. Physique théorique 54.3 (1991): 229-243. <http://eudml.org/doc/76531>.

@article{Jensen1991,
author = {Jensen, Arne, Ozawa, Tohru},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {scattering theory for Stark Hamiltonains; classical wave operators exist and are asymptotically complete},
language = {eng},
number = {3},
pages = {229-243},
publisher = {Gauthier-Villars},
title = {Classical and quantum scattering for Stark hamiltonians with slowly decaying potentials},
url = {http://eudml.org/doc/76531},
volume = {54},
year = {1991},
}

TY - JOUR
AU - Jensen, Arne
AU - Ozawa, Tohru
TI - Classical and quantum scattering for Stark hamiltonians with slowly decaying potentials
JO - Annales de l'I.H.P. Physique théorique
PY - 1991
PB - Gauthier-Villars
VL - 54
IS - 3
SP - 229
EP - 243
LA - eng
KW - scattering theory for Stark Hamiltonains; classical wave operators exist and are asymptotically complete
UR - http://eudml.org/doc/76531
ER -

References

top
  1. [1] J.E. Avron and I.W. Herbst, Spectral and Scattering Theory for the Schrôdinger Operators Related to the Stark Effect, Commun. Math. Phys., Vol. 52, 1977, pp. 239-254. Zbl0351.47007MR468862
  2. [2] I.W. Herbst, Unitary Equivalence of Stark Effect Hamiltonians, Math. Z., Vol. 155, 1977, pp. 55-70. Zbl0338.47009MR449318
  3. [3] A. Jensen, Asymptotic Completeness for a New Class of Stark Effect Hamiltonians, Commun. Math. Phys., Vol. 107, 1986, pp. 21-28. Zbl0606.34020MR861882
  4. [4] A. Jensen, Commutator Methods and Asymptotic Completeness for One-Dimensional Stark Effect Hamiltonians, pp. 151-166 in Schrödinger Operators, Aarhus, 1985, E. BALSLEV Ed., Springer Lect. Notes Math., No. 1218, 1986. Zbl0608.35013MR869600
  5. [5] A. Jensen, Scattering Theory for Hamiltonians with Stark Effect, Ann. Inst. Henri Poincaré, Phys. Théor., Vol. 46, 1987, pp. 383-395. Zbl0677.34026MR912156
  6. [6] A. Jensen and K. Yajima, preprint, 1990. 
  7. [7] T. Kato, Perturbation Theory for Linear Operators, second edition, Springer-Verlag, Heidelberg, 1976. Zbl0342.47009MR407617
  8. [8] H. Kitada and K. Yajima, A Scattering Theory for Time-Dependent Long-Range Potentials, Duke Math. J., Vol. 42, 1982, pp. 341-376. Zbl0499.35087MR659945
  9. [9] M. Loss and B. Thaller, Scattering of Particles by Long-Range Magnetic Fields, Ann. Phys. (N. Y.), Vol. 176, 1987, pp. 159-180. Zbl0646.35074MR893482
  10. [10] T. Ozawa, Non-Existence of Wave Operators for Stark Effect Hamiltonians, preprint, 1989, Math. Z. (to appear). 
  11. [11] M. Reed and B. Simon, Methods of Modern Mathematical Physics. Vol. 3, Scattering Theory, Academic Press, New York, 1979. Zbl0405.47007MR529429
  12. [12] B. Simon, Phase Space Analysis of Simple Scattering Systems. Extensions of Some Work of Enss, Duke Math. J., Vol. 46, 1979, pp. 119-168. Zbl0402.35076MR523604
  13. [13] K VESELIć and J. Weidmann, Potential Scattering in a Homogeneous Electrostatic Field, Math. Z., Vol. 156, 1977, pp. 93-104. Zbl0364.35042MR510118
  14. [14] D. White, The Stark effect and long range scattering in two Hilbert spaces, preprint, 1990. Zbl0695.35144MR1089052
  15. [15] K. Yajima, Spectral and Scattering Theory for Schrôdinger Operators with Stark Effect, J. Fac. Sci. Univ. Tokyo, Sect IA, Vol. 26, 1979, pp. 377-390. Zbl0429.35027MR560003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.